Skip to main content
Log in

Enzymeless voltammetric hydrogen peroxide sensor based on the use of PEDOT doped with Prussian Blue nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor for H2O2 was developed based on electrochemically deposited Prussian blue (PB) nanoparticles doped poly(3,4-ethylenedioxythiophene) (PEDOT). The PEDOT/PB composite was composed of PEDOT wrapped PB nanoparticles, where the conducting polymer PEDOT not only protected the PB particles to warrant high stability, but also connected them to enhance the electron transfer. Owing to the excellent conductivity of PEDOT and unique electrocatalytic activity of PB, the PEDOT/PB modified electrode exhibited good catalytic activity toward the electrochemical reduction of H2O2, and was used for the detection of H2O2 in concentrations ranging from 0.5 to 839 μM, with a detection limit of 0.16 μM. Moreover, the sensor also demonstrated excellent reproducibility, selectivity and long-term stability, showing great promise for the fabrication of electrochemical sensors and H2O2 related biosensors.

An electrochemical non-enzymatic sensor for hydrogen peroxide with excellent stability was developed. It is based on conducting polymer PEDOT doped with Prussian blue nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Y, Zheng J, Sheng Q, Wang B (2015) Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchim Acta 182(1–2):61–68

    Article  CAS  Google Scholar 

  2. Yang Y, Fu R, Yuan J, Wu S, Zhang J, Wang H (2015) Highly sensitive hydrogen peroxide sensor based on a glassy carbon electrode modified with platinum nanoparticles on carbon nanofiber heterostructures. Microchim Acta 182(13–14):2241–2249

    Article  CAS  Google Scholar 

  3. Ming L, Peng T, Tu Y (2016) Multiple enhancement of luminol electrochemiluminescence using electrodes functionalized with titania nanotubes and platinum black: ultrasensitive determination of hydrogen peroxide, resveratrol, and dopamine. Microchim Acta 183(1):305–310

    Article  CAS  Google Scholar 

  4. Yang Z, Qi C, Zheng X, Zheng J (2016) Sensing hydrogen peroxide with a glassy carbon electrode modified with silver nanoparticles, AlOOH and reduced graphene oxide. Microchim Acta 183(3):1131–1136

    Article  CAS  Google Scholar 

  5. Mei L, Zhang P, Chen J, Chen D, Quan Y, Gu N, Cui R (2016) Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183(4):1359–1365

    Article  CAS  Google Scholar 

  6. Wu Q, Sheng Q, Zheng J (2016) Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchim Acta 183(6):1943–1951

    Article  CAS  Google Scholar 

  7. Baghayeri M, Zare EN, Lakouraj MM (2015) Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim Acta 182(3–4):771–779

    Article  CAS  Google Scholar 

  8. Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182(9–10):1803–1809

    Article  CAS  Google Scholar 

  9. Shi L, Niu X, Liu T, Zhao H, Lan M (2015) Electrocatalytic sensing of hydrogen peroxide using a screen printed carbon electrode modified with nitrogen-doped graphene nanoribbons. Microchim Acta 182(15–16):2485–2493

    Article  CAS  Google Scholar 

  10. Yang J, Lin M, Cho M, Lee Y (2015) Determination of hydrogen peroxide using a Prussian blue modified macroporous gold electrode. Microchim Acta 182(5–6):1089–1094

    Article  CAS  Google Scholar 

  11. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407

    Article  CAS  Google Scholar 

  12. Mokrushina AV, Heim M, Karyakina EE, Kuhn A, Karyakin AA (2013) Enhanced hydrogen peroxide sensing based on Prussian blue modified macroporous microelectrodes. Electrochem Commun 29:78–80

    Article  CAS  Google Scholar 

  13. Kong B, Selomulya C, Zheng G, Zhao D (2015) New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. Chem Soc Rev 44(22):7997–8018

    Article  CAS  Google Scholar 

  14. Zanfrognini B, Zanardi C, Terzi F, Ääritalo T, Viinikanoja A, Lukkari J, Seeber R (2011) Layer-by-layer deposition of a polythiophene/Au nanoparticles multilayer with effective electrochemical properties. J Solid State Electr 15(11–12):2395–2400

    Article  CAS  Google Scholar 

  15. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  CAS  Google Scholar 

  16. Hornok V, Dékány I (2007) Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. Interf Sci 309(1):176–182

    Article  CAS  Google Scholar 

  17. Fiorito PA, Gonçales VR, Ponzio EA, de Torresi SIC (2005) Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem Commun 3:366–368

    Article  Google Scholar 

  18. Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors Actuators B Chem 147(1):270–276

    Article  CAS  Google Scholar 

  19. Li N, He B, Xu S, Yuan J, Miao J, Niu L, Song J (2012) In site formation and growth of Prussian blue nanoparticles anchored to multiwalled carbon nanotubes with poly (4-vinylpyridine) linker by layer-by-layer assembly. Mater Chem Phys 133(2):726–734

    Article  CAS  Google Scholar 

  20. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614(1):1–26

    Article  CAS  Google Scholar 

  21. Bhandari S, Deepa M, Srivastava AK, Joshi AG, Kant R (2009) Poly (3, 4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity. J Phys Chem B 113(28):9416–9428

    Article  CAS  Google Scholar 

  22. Sundari PA, Manisankar P (2011) Development of ultrasensitive surfactants doped poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotube sensor for the detection of pyrethroids and an organochlorine pesticide. J Appl Electrochem 41(1):29–37

    Article  CAS  Google Scholar 

  23. Ernst A, Makowski O, Kowalewska B, Miecznikowski K, Kulesza PJ (2007) Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic-inorganic film of structured Prussian blue and PEDOT. Bioelectrochemistry 71(1):23–28

    Article  CAS  Google Scholar 

  24. Zhang Q, Zhang L, Li J (2007) “Green” synthesis of size controllable Prussian blue nanoparticles stabilized by soluble starch. Nanotechnol 7(12):4557–4561

    CAS  Google Scholar 

  25. Cao L, Liu Y, Zhang B, Lu L (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2(8):2339–2346

    Article  CAS  Google Scholar 

  26. Xu M, Luo X, Davis JJ (2013) The label free picomolar detection of insulin in blood serum. Biosens Bioelectron 39(1):21–25

    Article  CAS  Google Scholar 

  27. Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13(10):813–819

    Article  CAS  Google Scholar 

  28. Zhang Y, Sun X, Zhu L, Shen H, Jia N (2011) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245

    Article  CAS  Google Scholar 

  29. Ghaderi S, Mehrgardi MA (2014) Prussian blue-modified nanoporous gold film electrode foramperometric determination of hydrogen peroxide. Bioelectrochemistry 98:64–69

    Article  CAS  Google Scholar 

  30. Zhang Y, Luo H, Li N (2011) Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode. Bioprocess Biosyst Eng 34:215–221

    Article  Google Scholar 

  31. Gong H, Sun M, Fan R (2013) Qian L (2013) one-step preparation of a composite consisting of grapheme oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchim Acta 180:295–301

    Article  CAS  Google Scholar 

  32. Li Y, Liu X, Zeng X, Liu Y, Liu X, Wei W, Luo S (2009) Nonenzymatic hydrogen peroxide sensor based on a Prussian blue-modified carbon ionic liquid electrode. Microchim Acta 165:393–398

    Article  CAS  Google Scholar 

  33. Saha BK, Ali MY, Chakraborty M, Islam Z, Hira AK (2003) Study on the preservation of raw milk with hydrogen peroxide (H2O2) for rural dairy farmers. Pak J Nutr 2:36–42

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (21275087, 21422504), the Natural Science Foundation of Shandong Province of China (JQ201406), and the Taishan Scholar Program of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y., Cui, M. et al. Enzymeless voltammetric hydrogen peroxide sensor based on the use of PEDOT doped with Prussian Blue nanoparticles. Microchim Acta 184, 483–489 (2017). https://doi.org/10.1007/s00604-016-2025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2025-y

Keywords

Navigation