Skip to main content
Log in

Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes an electrochemical sensor for the detection of uric acid (UA) by using a glassy carbon electrode (GCE) modified with a composite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. The PPy/GO nanocomposites were synthesized by in-situ chemical oxidation polymerization. Microspheres loaded with p-TPP were mixed into the PPy/GO nanocomposite, deposited on the GCE and dried upon which aggregation occurs. The nanocomposites were characterized by scanning electron microscopy, FTIR and Raman spectroscopy. The sensor was applied to the voltammetric determination of UA by differential pulse voltammetry (DPV). The oxidation current varies with the UA concentration in the range from 5 to 200 μM, and electrochemical response is distinctly improved compared to GCEs modified with p-TPP or PPy/GO only. The modified electrode shows excellent linearity, lower detection limit of 1.15 μM. The results also demonstrate that the modified electrode exhibited good selectivity and sensitivity toward UA even in the presence of AA and DA.

An electrochemical sensor was researched for selectivity detecting uric acid (UA) by using polytetraphenylporphyrin/polypyrrole/graphene oxide (p-TPP/PPy/GO) composites modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Özcan A, İlkbaş S (2015) Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Anal Chim Acta 891:312–320

    Article  Google Scholar 

  2. Yue HY, Zhang H, Chang J, Gao X, Huang S, Yao LH, Lin XY, Guo EJ (2015) Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal Biochem 488:22–27

    Article  CAS  Google Scholar 

  3. Wu D, Lu HF, Xie H, Wu J, Wang CM, Zhang QL (2015) Uricase-stimulated etching of silver nanoprisms for highly selective and sensitive colorimetric detection of uric acid in human serum. Sensors Actuators B Chem 221:1433–1440

    Article  CAS  Google Scholar 

  4. Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365

    Article  CAS  Google Scholar 

  5. Li XL, Li G, Jiang YZ, Kang DZ, Jin CH, Shi Q, Jin TF, Inoue K, Todoroki K, Toyo'oka T, Min JZ (2015) Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr B 1002:394–398

    Article  CAS  Google Scholar 

  6. QJ L, Deng JH, Hou YX, Wang HY, Li HT, Zhang YY (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51:12251–12253

    Article  Google Scholar 

  7. Piermarini S, Migliorelli D, Volpe G, Massoud R, Pierantozzi A, Cortese C, Palleschi G (2013) Uricase biosensor based on a screen-printed electrode modified with Prussian blue for detection of uric acid in human blood serum. Sensors Actuators B Chem 179:170–174

    Article  CAS  Google Scholar 

  8. Huang D, Cheng Y, Xu H, Zhang H, Sheng L, Xu H, Liu Z, Wu H, Fan S (2015) The determination of uric acid in human body fluid samples using glassy carbon electrode activated by a simple electrochemical method. J Solid State Electrochem 19:435–443

    Article  CAS  Google Scholar 

  9. Sun Z, Fu H, Deng L, Wang J (2013) Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal Chim Acta 761:84–91

    Article  CAS  Google Scholar 

  10. Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin. Microchim Acta 182:1877–1884

    Article  CAS  Google Scholar 

  11. Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 193:166–172

    Article  CAS  Google Scholar 

  12. Yu Y, Chen Z, Zhang B, Li X, Pan J (2013) Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode. Talanta 112:31–36

    Article  CAS  Google Scholar 

  13. CH X, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  Google Scholar 

  14. Deng M, Yang X, Silke M, Qiu WM, Xu MS, Borghs G, Chen HZ (2011) Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensors Actuators B Chem 158:176–184

    Article  CAS  Google Scholar 

  15. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53:923–932

    Article  CAS  Google Scholar 

  16. Balasoiu SC, Stefan-van Staden RI, van Staden JF, Pruneanu S, Radu GL (2010) Carbon and diamond paste microelectrodes based on Mn (III) porphyrins for the determination of dopamine. Anal Chim Acta 668:201–207

    Article  CAS  Google Scholar 

  17. Chen L, Guo X, Guo B, Cheng SK, Wang F (2016) Electrochemical investigation of a metalloporphyrin-graphene composite modified electrode and its electrocatalysis on ascorbic acid. J Electroanal Chem 760:105–112

    Article  CAS  Google Scholar 

  18. Han HS, Lee HK, You JM, Jeong H, Jeon S (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sensors Actuators B Chem 190:886–895

    Article  CAS  Google Scholar 

  19. Lv M, Mei T, Zhang C, Wang X (2014) Selective and sensitive electrochemical detection of dopamine based on water-soluble porphyrin functionalized graphene nanocomposites. RSC Adv 4:9261–9270

    Article  CAS  Google Scholar 

  20. Wang C, Yuan R, Chai Y, Chen S, Zhang Y, Hu F, Zhang M (2012) Non-covalent iron (III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Electrochim Acta 62:109–115

    Article  CAS  Google Scholar 

  21. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80

  22. Modak A, Nandi M, Mondal J, Bhaumik A (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250

    Article  CAS  Google Scholar 

  23. Yang A, Xue Y, Zhao H, Li X, Yuan Z (2015) One-pot synthesis of ternary hybrid nanomaterial composed of a porphyrin-functionalized graphene, tin oxide, and gold nanoparticles, and its application to the simultaneous determination of epinephrine and uric acid. Microchim Acta 182:341–349

    Article  CAS  Google Scholar 

  24. Mei LP, Feng JJ, Wu L, Chen JR, Shen L, Xie Y, Wang AJ (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183:2039–2046

    Article  CAS  Google Scholar 

  25. Wu F, Huang T, Hu Y, Yang X, Ouyang Y, Xie Q (2016) Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183:2539–2546

    Article  CAS  Google Scholar 

  26. Deng K, Li X, Huang H (2016) A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:2139–2145

    Article  CAS  Google Scholar 

  27. Yan X, Gu Y, Li C, Tang L, Zheng B, Li Y, Zhang Z, Yang M (2016) Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosens Bioelectron 77:1032–1038

    Article  CAS  Google Scholar 

  28. Lu G, Zhou M, Lu J, Li Z (2008) Raman Spectrum of Meso-substituted Tetraphenylporphyrins. Journal of Jilin University (Science Edition) 2:358–360

    Google Scholar 

  29. Raj MA, John SA (2013) Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal Chim Acta 771:14–20

    Article  CAS  Google Scholar 

  30. Zhang F, Tang J, Wang Z, Qin LC (2013) Graphene-carbon nanotube composite aerogel for selective detection of uric acid. Chem Phys Lett 590:121–125

    Article  CAS  Google Scholar 

  31. Oukil D, Benhaddad L, Aitout R, Makhloufi L, Pillier F, Saidani B (2014) Electrochemical synthesis of polypyrrole films doped by ferrocyanide ions onto iron substrate: Application in the electroanalytical determination of uric acid [J]. Sens Actuator B:Chem 204:203–210

    Article  CAS  Google Scholar 

  32. Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183:2517–2523

    Article  CAS  Google Scholar 

  33. Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182:1345–1352

    Article  CAS  Google Scholar 

  34. Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LA, Liu P, Zhang C (2016) Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Microchim Acta 183:1401–1408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds of Shandong University (2015HW019), and the National Natural Science Foundation of China (21373129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Lin.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Wang, N., Wang, D. et al. Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim Acta 183, 3053–3059 (2016). https://doi.org/10.1007/s00604-016-1953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1953-x

Keywords

Navigation