Skip to main content
Log in

Mitochondria-targeted theranostic nanoparticles for optical sensing of oxygen, photodynamic cancer therapy, and assessment of therapeutic efficacy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel kind of mitochondria-targeted theranostic nanoparticles (NPs). The NPs are doped with the oxygen-sensitive probe Pt(II)-porphyrins (PtTFPP) which exerts a dual role in acting as a diagnostic tool that can sense oxygen via quenching of luminescence, but also acts as an agent in photodynamic therapy (PDT) of cancer. In addition, it allows therapeutic efficacy to be assessed in-situ. Upon appropriate high-energy photoirradiation, the NPs generate singlet oxygen by energy transfer from triplet PtTFPP to ground state oxygen, and cell death is induced via PDT. Under low-energy light irradiation, in contrast, the NPs can be utilized to detect oxygen consumption rate via time-resolved luminescence measurements in order to study the efficacy of PDT. This is the first report where a single nanoagent is used to stimulate PDT and also to assess the efficacy of PDT. In our perception, the method provides a promising platform for testing anti-cancer drugs.

We report on a kind of mitochondria-targeted theranostic nanoparticles (NPs) doped with Pt(II)-porphyrins for oxygen sensing via quenching of luminescence, efficient photodynamic therapy (PDT) of cancer and quantitative assessment of therapeutic response in-situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCarthy JR, Jaffer FA, Weissleder R (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2:983–987

    Article  CAS  Google Scholar 

  2. Sumer B, Gao JM (2008) Theranostic nanomedicine for cancer. Nanomedicine 3:137–140

    Article  Google Scholar 

  3. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589

    Article  CAS  Google Scholar 

  4. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115:327–394

    Article  CAS  Google Scholar 

  5. Yang Y (2014) Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Microchim Acta 181:263–294

    Article  CAS  Google Scholar 

  6. Gohy JF, Zhao Y (2013) Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev 42:7117–7129

    Article  CAS  Google Scholar 

  7. Dougherty TJ (1987) Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol 45:879–889

    Article  CAS  Google Scholar 

  8. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55: 145–157.

  9. Dellinger M, Ricchelli F, Moreno G, Salet C (1994) Hemato-porphyrin derivative (Photofrin) photodynamic action on Ca2+ transport in monkey kidney cells (CV-1. Photochem Photobiol 60:368–372

    Article  CAS  Google Scholar 

  10. Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128

    Article  CAS  Google Scholar 

  11. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  Google Scholar 

  12. Hilf R (2007) Mitochondria are targets of photodynamic therapy. J Bioenerg Biomembr 39:85–89

    Article  CAS  Google Scholar 

  13. Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Article  CAS  Google Scholar 

  14. Li Y, Tan CP, Zhang W, He L, Ji LN, Mao ZW (2015) Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 39:95–104

    Article  CAS  Google Scholar 

  15. Ye RR, Tan CP, He L, Chen MH, Jia LN, Mao ZW (2014) Cyclometalated Ir(III) complexes as targeted theranostic anticancer therapeutics: combining HDAC inhibition with photodynamic therapy. Chem Commun 50:10945–10948

    Article  CAS  Google Scholar 

  16. Shi HF, Ma X, Zhao Q, Liu B, Qu QY, An ZF, Zhao YL, Huang W (2014) Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy. Adv Funct Mater 24:4823–4830

    Article  CAS  Google Scholar 

  17. Li SP, Lau CT, Louie MW, Lam YW, Cheng SH, Lo KK (2013) Mitochondria-targeting cyclometalated iridium(III)-PEG complexes with tunable photodynamic activity. Biomaterials 34:7519–7532

    Article  CAS  Google Scholar 

  18. Cheng SH, Lee CH, Yang CS, Tseng FG, Moud CY, Lo LW (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem 19:1252–1257

    Article  CAS  Google Scholar 

  19. Liu JP, Chen Y, Li GY, Zhang PY, Jin CZ, Zeng LL, Ji LN, Chao H (2015) Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials 56:140–153

    Article  CAS  Google Scholar 

  20. Truillet C, Lux F, Moreau J, Four M, Sancey L, Chevreux S, Boeuf G, Perriat P, Frochot C, Antoine R, Dugourd P, Portefaix C, Hoeffel C, Barberi-Heyob M, Terryn C, van GL, Lemercier G, Tillement O (2013) Bifunctional polypyridyl-Ru(II) complex grafted onto gadolinium-based nanoparticles for MR-imaging and photodynamic therapy. Dalton Trans 42:12410–12420

    Article  CAS  Google Scholar 

  21. Varchola J, Huntosova V, Jancura D, Wagnières G, Miskovsky P, Bánó G (2014) Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation. Photochem Photobiol Sci 13:1781–1787

    Article  CAS  Google Scholar 

  22. Farhadi A, Roxin Á, Wilson BC, Zheng G (2015) Nano-enabled SERS reporting photosensitizers. Theranostics 5:469–476

    Article  CAS  Google Scholar 

  23. Neumeyer A, Bukowski M, Veith M, Lehr CM, Daum N (2014) Non-invasive determination of cellular oxygen consumption as novel cytotoxicity assay for nanomaterials. Nanotoxicology 8:50–60

    Article  CAS  Google Scholar 

  24. Dmitriev RI, Papkovsky DB (2015) Intracellular probes for imaging oxygen concentration: how good are they? Methods Appl Fluoresc 3:034001

    Article  Google Scholar 

  25. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  Google Scholar 

  26. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761

    Article  CAS  Google Scholar 

  27. Peng HS, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44:4699–4722

    Article  CAS  Google Scholar 

  28. Jin I, Yuji M, Yoshinori N, Makoto K, Mikio M (2008) Anti-tumor effect of PDT using Photofrin in a mouse angiosarcoma model. Arch Dermatol Res 300:161–166

    Article  CAS  Google Scholar 

  29. Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:4773–4782

    Article  CAS  Google Scholar 

  30. Wang XH, Peng HS, Yang L, You FT, Teng F, Tang AW, Zhang FJ, Li XH (2013) Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. J Mater Chem B 1:5143–5152

    Article  CAS  Google Scholar 

  31. Wang XH, Peng HS, Yang L, You FT, Teng F, Hou LL, Wolfbeis OS (2014) Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity. Angew Chem Int Ed 126:12679–12683

    Article  Google Scholar 

  32. Wang XH, Peng HS, Ding H, You FT, Huang SH, Teng F, Dong B, Song HW (2012) Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing. J Mater Chem 22:16066–16071

    Article  CAS  Google Scholar 

  33. Wang XH, Peng HS, Chang Z, Hou LL, You FT, Teng F, Song HW, Dong B (2012) Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Microchim Acta 178:147–152

    Article  CAS  Google Scholar 

  34. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729

    Article  CAS  Google Scholar 

  35. O’Riordan TC, Zhdanov AV, Ponomarev GV, Papkovsky DB (2007) Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved Fluorometry. Anal Chem 79:9414–9419

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program) under grant No.2014CC339900 and Chinese Postdoctoral Science Foundation under grant No.2016 M591126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hui Wang.

Electronic supplementary material

ESM 1

(DOCX 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XH., Peng, HS., Yang, W. et al. Mitochondria-targeted theranostic nanoparticles for optical sensing of oxygen, photodynamic cancer therapy, and assessment of therapeutic efficacy. Microchim Acta 183, 2723–2731 (2016). https://doi.org/10.1007/s00604-016-1917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1917-1

Keywords

Navigation