Skip to main content
Log in

Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In order to develop an aptamer based fluorescence resonance energy transfer (FRET) assay for 19-nortestosterone, a 76-mer 17β-estradiol aptamer was split into two pieces (referred to as P1 and P2, respectively). P1 was labeled with a quencher (BHQ), and P2 with a fluorophore (6FAM). The two aptamer pieces were employed to detect NT via FRET quenching in a homogeneous solution. This method has a low detection limit (5 μM) within a wide dynamic range (5 to 1000 μM). The approach was used to analyze spiked urine samples, and the results showed that the average recovery of three samples containing different NT concentrations ranged from 58 to 118 % with a relative standard deviation (RSD) of less than 1 %. In our perception, the method has a wide scope for future applications to other analytes by using dually labeled split aptamers.

A split aptamer-based fluorescence resonance energy transfer assay for 19-nortestosterone was developed with a wide dynamic range of 5 to 1000 μM and low detection limit (5 μM). The average recovery from spiked urine samples ranged from 58 to 118 %, with a relative standard deviation (RSD) of less than 1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marras SA, Tyagi S, Kramer FR (2006) Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clin Chim Acta 363(1–2):48–60. doi:10.1016/j.cccn.2005.04.037

    Article  CAS  Google Scholar 

  2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    Article  CAS  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (4968):505–510

  4. Kunii T, Ogura S, Mie M, Kobatake E (2011) Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst 136(7):1310–1312. doi:10.1039/c0an00962h

    Article  CAS  Google Scholar 

  5. Hamula CL, Le XC, Li XF (2011) DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes. Anal Chem 83(10):3640–3647. doi:10.1021/ac200575e

    Article  CAS  Google Scholar 

  6. Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724–2727. doi:10.1016/j.bios.2010.09.032

    Article  CAS  Google Scholar 

  7. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC-TrendAnal Chem 27(2):108–117. doi:10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  8. Han K, Liang ZQ, Zhou ND (2010) Design strategies for aptamer-based biosensors. Sensors-Basel 10(5):4541–4557. doi:10.3390/S100504541

    Article  CAS  Google Scholar 

  9. SX X, Zhang XF, Liu WW, Sun YH, Zhang HL (2013) Reusable light-emitting-diode induced chemiluminescence aptasensor for highly sensitive and selective detection of riboflavin. Biosens Bioelectron 43:160–164. doi:10.1016/j.bios.2012.12.012

    Article  Google Scholar 

  10. Sassolas A, Blum LJ, Leca-Bouvier BD (2011) Homogeneous assays using aptamers. Analyst 136(2):257–274. doi:10.1039/C0an00281j

    Article  CAS  Google Scholar 

  11. Li BL, Dong SJ, Wang EK (2010) Homogeneous analysis: label-free and substrate-free aptasensors. Chem-Asian J 5(6):1262–1272. doi:10.1002/asia.200900660

    CAS  Google Scholar 

  12. Niu SC, Lv ZZ, Liu JC, Bai WH, Yang SM, Chen AL (2014) Colorimetric Aptasensor Using Unmodified Gold Nanoparticles for Homogeneous Multiplex Detection. PLoS One 9(10):e109263. doi:10.1371/journal.pone.0109263

    Article  Google Scholar 

  13. Kim YS, Jurng J (2011) Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection. Analyst 136(18):3720–3724. doi:10.1039/C1an15261k

    Article  CAS  Google Scholar 

  14. Chen XJ, Ge LN, Guo BH, Yan M, Hao N, Xu L (2014) Homogeneously ultrasensitive electrochemical detection of adenosine triphosphate based on multiple signal amplification strategy. Biosens Bioelectron 58:48–56. doi:10.1016/j.bios.2014.02.043

    Article  CAS  Google Scholar 

  15. Zhang DW, Nie J, Zhang FT, Xu L, Zhou YL, Zhang XX (2013) Novel homogeneous label-free electrochemical aptasensor based on functional DNA hairpin for target detection. Anal Chem 85(19):9378–9382. doi:10.1021/Ac402295y

    Article  CAS  Google Scholar 

  16. QF X, Zhu GC, Zhang CY (2013) Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label. Anal Chem 85(14):6915–6921. doi:10.1021/Ac401334r

    Article  Google Scholar 

  17. YQ Y, Cao Q, Zhou M, Cui H (2013) A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron 43:137–142. doi:10.1016/j.bios.2012.12.018

    Article  Google Scholar 

  18. Xue QW, Zhang G, Wang L, Jiang W (2014) Aptamer-based exonuclease protection and enzymatic recycling cleavage amplification homogeneous assay for the highly sensitive detection of thrombin. Analyst 139(12):3167–3173. doi:10.1039/C4an00205a

    Article  CAS  Google Scholar 

  19. Li L, Wang Q, Feng J, Tong LL, Tang B (2014) Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets. Anal Chem 86(10):5101–5107. doi:10.1021/Ac500881p

    Article  CAS  Google Scholar 

  20. Zhang SS, Yan YM, Bi S (2009) Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer. Anal Chem 81(21):8695–8701. doi:10.1021/Ac901759g

    Article  CAS  Google Scholar 

  21. Zheng DM, Zou RX, Lou XH (2012) Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Anal Chem 84(8):3554–3560. doi:10.1021/Ac300690r

    Article  CAS  Google Scholar 

  22. Tan YY, Guo QP, Zhao XY, Yang XH, Wang KM, Huang J, Zhou Y (2014) Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification. Biosens Bioelectron 51:255–260. doi:10.1016/j.bios.2013.08.001

    Article  CAS  Google Scholar 

  23. Jiang JQ, Wang ZL, Zhang HT, Zhang XJ, Liu XY, Wang SH (2011) Monoclonal antibody-based ELISA and colloidal gold immunoassay for detecting 19-nortestosterone residue in animal tissues. J Agr Food Chem 59(18):9763–9769. doi:10.1021/jf2012437

    Article  CAS  Google Scholar 

  24. Toh SY, Citartan M, Gopinath SCB, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. doi:10.1016/j.bios.2014.09.026

    Article  CAS  Google Scholar 

  25. Stubbings GW, Cooper AD, Shepherd MJ, Croucher JM, Airs D, Farrington WH, Shearer G (1998) Determination of 19-nortestosterone and trenbolone in animal tissues by high-performance liquid chromatography with immunoaffinity clean-up. Food Addit Contam 15(3):293–301. doi:10.1080/0265203980937464426.

    Article  CAS  Google Scholar 

  26. Tai SS, Xu B, Sniegoski LT, Welch MJ (2006) Development and evaluation of a candidate reference measurement procedure for the determination of 19-norandrosterone in human urine using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 78:3393–3398

    Article  CAS  Google Scholar 

  27. Jiang JQ, Zhang L, Li GL, Zhang HT, Yang XF, Liu JW, Li RF, Wang ZL, Wang JH (2011) Analysis of 19-nortestosterone residue in animal tissues by ion-trap gas chromatography-tandem mass spectrometry. Biomed & Biotechnol 12(6):460–467

    CAS  Google Scholar 

  28. Jiang J, Zhang H, Li G, Yang X, Li R, Wang Z, Wang J (2012) Establishment and optimization of monoclonal antibody-based heterologous dcELISA for 19-nortestosterone residue in bovine edible tissue. J Food Sci 77(4):T63–T69. doi:10.1111/j.1750-3841.2011.02578.x

    Article  CAS  Google Scholar 

  29. Prokudina EA, Sevcikova L, Dymicova M, Miksatkova P, Lapcik O (2013) ELISA for detection of 19-nortestosterone in dietary supplements. Febs J 280:466–466

    Google Scholar 

  30. Liu L, Peng C, Jin Z, Xu C (2007) Development and evaluation of a rapid lateral flow immunochromatographic strip assay for screening 19-nortestosterone. Biomed Chromatogr 21(8):861–866. doi:10.1002/bmc.832

    Article  CAS  Google Scholar 

  31. Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17[bgr]-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4. doi:10.1038/srep07571

  32. Wu CC, Yan L, Wang CM, Lin HX, Wang C, Chen X, Yang CJ (2010) A general excimer signaling approach for aptamer sensors. Biosens Bioelectron 25(10):2232–2237. doi:10.1016/j.bios.2010.02.030

    Article  CAS  Google Scholar 

  33. He XX, Li ZX, Jia XK, Wang KM, Yin JJ (2013) A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta 111:105–110. doi:10.1016/j.talanta.2013.02.050

    Article  CAS  Google Scholar 

  34. Bai YF, Feng F, Zhao L, Chen ZZ, Wang HY, Duan YL (2014) A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139(8):1843–1846. doi:10.1039/C4an00084f

    Article  CAS  Google Scholar 

  35. Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131(20):6944–6945. doi:10.1021/ja901315w

    Article  CAS  Google Scholar 

  36. Cheng S, Zheng B, Wang MZ, Lam MHW, Ge XW (2013) Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate. Talanta 115:506–511

    Article  CAS  Google Scholar 

  37. Chen JH, Zeng LW (2013) Enzyme-amplified electronic logic gates based on split/intact aptamers. Biosens Bioelectron 42:93–99. doi:10.1016/j.bios.2012.10.030

    Article  Google Scholar 

  38. Chen J, Fang Z, Lie P, Zeng L (2012) Computational lateral flow biosensor for proteins and small molecules: a new class of strip logic gates. Anal Chem 84(15):6321–6325. doi:10.1021/ac301508b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by International Science & Technology Cooperation Program of China (2012DFA31140). The authors express their gratitude for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailiang Chen.

Ethics declarations

Conflict of interest

The authors declared no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, W., Zhu, C., Liu, J. et al. Split aptamer-based sandwich fluorescence resonance energy transfer assay for 19-nortestosterone. Microchim Acta 183, 2533–2538 (2016). https://doi.org/10.1007/s00604-016-1905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1905-5

Keywords

Navigation