Skip to main content
Log in

Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nitrogen- and iron-containing carbon dots (N,Fe-CDs) are synthesized by hydrothermal treatment of branched polyethylenimine (BPEI) and hemin at 180 °C. The N,Fe-CDs are mainly doped with nitrogen and trace amounts of iron(III). The N,Fe-CDs also display intrinsic fluorescence with excitation/emission maxima at 365/452 nm and a quantum yield of 27 %. The nanodots are shown to act as peroxidase mimics by catalyzing the oxidation of tetramethylbenzidine (TMB) by hydrogen peroxide to form a blue product whose quantity can be determined by photometry at 652 nm. This was exploited to design colorimetric and fluorometric assays for dopamine (DA). The colorimetric assay is based on the oxidation of DA by H2O2 in presence of the N,Fe-CDs and TMB. It has an instrumental detection limit of 40 nM (at an S/N ratio of 3), and a visual detection limit of 0.4 μM. The fluorometric assay is based on an inner filter effect that is caused by the formation of oxidized TMB which overlaps (and absorbs) the emission of the N,Fe-CDs located at 452 nm. The fluorometric detection limit is as low as 20 nM (at an S/N ratio of 3).

Carbon dots containing nitrogen and iron (N,Fe-CDs) were synthesized by hydrothermal treatment of branched polyethylenimine and hemin. The N,Fe-CDs display excellent fluorescent properties, peroxidase-like activity and potential application in colorimetric and fluorometric detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent Nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  2. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  CAS  Google Scholar 

  3. Gong Y, Yu B, Yang W, Zhang X (2016) Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens Bioelectron 79:822–828

    Article  CAS  Google Scholar 

  4. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  5. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S (2010) Water-soluble fluorescent carbon quantum dots and Photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  6. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  7. Zhuo S, Shao M, Lee ST (2012) Upconversion and Downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6:1059–1064

    Article  CAS  Google Scholar 

  8. Sun H, Zhao A, Gao N, Li K, Ren J, Qu X (2015) Deciphering a Nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed 54:7176–7180

    Article  CAS  Google Scholar 

  9. Zhu W, Zhang J, Jiang Z, Wang W, Liu X (2014) High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv 4:17387–17392

    Article  CAS  Google Scholar 

  10. Zhang G, Dasgupta PK (1992) Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal Chem 64:517–522

    Article  CAS  Google Scholar 

  11. Ge C, Luo Q, Wang D, Zhao S, Liang X, Yu L, Xing X, Zeng L (2014) Colorimetric detection of copper(II) ion using click chemistry and hemin/G-Quadruplex horseradish peroxidase-mimicking DNAzyme. Anal Chem 86:6387–6392

    Article  CAS  Google Scholar 

  12. Bruice TC (1991) Reactions of hydroperoxides with metallotetraphenyl- porphyrins in aqueous solutions. Acc Chem Res 24:243–249

    Article  CAS  Google Scholar 

  13. Li Y, Huang X, Li Y, Xu Y, Wang Y, Zhu E, Duan X, Huang Y (2013) Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Sci Rep 3:1787

    Google Scholar 

  14. Wang Q, Xu N, Gui Z, Lei J, Ju H, Yan F (2015) Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing. Analyst 140:6532–6537

    Article  CAS  Google Scholar 

  15. Nakagaki S, Wypych F (2007) Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. J Colloid Interface Sci 315:142–157

    Article  CAS  Google Scholar 

  16. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50:2810–2815

    Article  CAS  Google Scholar 

  17. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986

    Article  CAS  Google Scholar 

  18. Zhang A, Neumeyer J, Baldessarini RJ (2007) Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 107:274–302

    Article  CAS  Google Scholar 

  19. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  Google Scholar 

  20. Hong C, Liu H, Liu T, Liao D, Tsai SJ (2005) Association studies of the adenosine A2a receptor (1976 T > C) genetic polymorphism in Parkinson’s disease and schizophrenia. J Neural Transm 112:1503–1510

    Article  CAS  Google Scholar 

  21. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  22. Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114

    Article  CAS  Google Scholar 

  23. Palanisamy S, Sakthinathan S, Chen S, Thirumalraj B, Wu T, Lou B, Liu X (2016) Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohydr Polym 135:267–273

    Article  CAS  Google Scholar 

  24. Guo Z, Seol M, Kim M, Ahn J, Huang X (2013) Sensitive and selective electrochemical detection of dopamine using an electrode modified with carboxylated carbonaceous spheres. Analyst 138:2683–2690

    Article  CAS  Google Scholar 

  25. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382

    Article  CAS  Google Scholar 

  26. Dong Y, Zhou N, Lin X, Lin J, Chi Y, Chen G (2010) Extraction of Electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater 22:5895–5899

    Article  CAS  Google Scholar 

  27. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 45:5118–5120

    Article  Google Scholar 

  28. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041

    Article  CAS  Google Scholar 

  29. Fleutot S, Dupin JC, Renaudin G, Martinez H (2011) Intercalation and grafting of benzene derivatives into zinc–aluminum and copper–chromium layered double hydroxide hosts: an XPS monitoring studyw. Phys Chem Chem Phys 13:17564–17578

    Article  CAS  Google Scholar 

  30. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  31. Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  32. Dong Y, Pang H, Yang H, Guo C, Shao J, Chi Y, Li C, Yu T (2013) Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800–7804

    Article  CAS  Google Scholar 

  33. Gao L, Wu J, Gao D (2011) Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. ACS Nano 5:6736–6742

    Article  CAS  Google Scholar 

  34. Shete MD, Fernandes JB (2015) A simple one step solid state synthesis of nanocrystalline ferromagnetic α-Fe2O3 with high surface area and catalytic activity. Mater Chem Phys 165:113–118

    Article  CAS  Google Scholar 

  35. Cao S, Kang F, Li P, Chen R, Liu H, Wei Y (2015) Photoassisted hetero-Fenton degradation mechanism of acid blue 74 by a γ-Fe2O3 catalyst. RSC Adv 5:66231–66238

    Article  CAS  Google Scholar 

  36. Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxen PS (2015) Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors Actuators B 218:42–50

    Article  CAS  Google Scholar 

  37. Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, Pal T (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide Nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119:23790–23800

    Article  CAS  Google Scholar 

  38. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta182: 1003–1008

  39. Liu J, Wang X, Cui M, Lin L, Jiang S, Jiao L, Zhang L (2013) A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sensors Actuators B Chem 176:97–102

    Article  CAS  Google Scholar 

  40. Yang A, Xue Y, Zhang Y, Zhang X, Zhao H, Li X, He Y, Yuan Z (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811

    Article  CAS  Google Scholar 

  41. Li H, Liu J, Yang M, Kong W, Huang H, Liu Y (2014) RSC Adv 4:46437–46443

    Article  CAS  Google Scholar 

  42. Li H, Yang M, Liu J, Zhang Y, Yang Y, Huang H, Liu Y, Kang Z (2015) A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine. Nanoscale 7:12068–12075

    Article  CAS  Google Scholar 

  43. Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of Tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87:4897–4902

    Article  CAS  Google Scholar 

  44. Mu Q, Xu H, Li Y, Ma S, Zhong X (2014) Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 139:93–98

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PhD start-up grants SWU113112, SWU113111 from Southwest University, National Natural Science Foundation of China (21505108) and Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies (Grant cstc2011pt).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Bo Weng.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic Supplementary Material

ESM 1

(DOC 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Chen, Y., Wu, Y. et al. Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183, 2491–2500 (2016). https://doi.org/10.1007/s00604-016-1885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1885-5

Keywords

Navigation