Skip to main content
Log in

Determination of α2,3-sialylated glycans in human serum using a glassy carbon electrode modified with carboxylated multiwalled carbon nanotubes, a polyamidoamine dendrimer, and a glycan-recognizing lectin from Maackia Amurensis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

α2,3-Sialylated glycans (α2,3-sial-Gs) are crucial molecular targets for cancer diagnosis and clinical research. We describe a biosensor for detecting α2,3-sial-Gs that is based on the specific recognition by the Maackia amurensis lectin (MAL). A glassy carbon electrode was modified with carboxy-modified MWCNTs and a polyamidoamine dendrimer (PAMAM). The PAMAM is highly branched and contains many amino groups. MAL was immobilized on the modified electrode to create a sensor capable of detecting α2,3-sial-Gs (at a working voltage of 0.2 V vs. SCE) in the 10 fg⋅mL−1 to 50 ng⋅mL−1 concentration range and with a detection limit as low as 3 fg⋅mL−1 (at an S/N ratio of 3). This approach may pave the way to detection schemes for other proteins and glycans if appropriate affinity binding pairs are available.

A simple biosensor used polyamidoamine dendrimer (PAMAM) grafted p-MWCNTs as platform to detect α2,3-sialylated glycans was developed. It possesses a good linear relationship ranged 10 fg mL−1 to 50 ng mL−1 with a detection limit of 3 fg mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim S, Oh DB, Kang HA, Kwon O (2011) Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 91:1

    Article  CAS  Google Scholar 

  2. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83:727

    Article  CAS  Google Scholar 

  3. Park JJ, Yi JY, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M (2012) Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem Pharmacol 83:849

    Article  CAS  Google Scholar 

  4. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163

    Article  CAS  Google Scholar 

  5. Dall'Olio F, Trere D (1993) Expression of alpha 2,6-sialylated sugar chains in normal and neoplastic colon tissues. Detection by digoxigenin-conjugated Sambucus nigra agglutinin. Eur J Histochem 37:257

    Google Scholar 

  6. Pousset D, Piller V, Bureaud N, Monsigny M, Piller F (1997) Increased alpha2,6 sialylation of N-glycans in a transgenic mouse model of hepatocellular carcinoma. Cancer Res 57:4249

    CAS  Google Scholar 

  7. Patil SA, Bshara W, Morrison C, Chandrasekaran EV, Matta KL, Neelamegham S (2014) Overexpression of alpha2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis. Glycoconj J 31:509

    Article  CAS  Google Scholar 

  8. Bertók T, Katrlík J, Gemeiner P, Tkac J (2012) Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta 180:1

    Article  Google Scholar 

  9. Boltje TJ, Buskas T, Boons GJ (2009) Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat Chem 1:611

    Article  CAS  Google Scholar 

  10. Gao L, He J, Xu W, Zhang J, Hui J, Guo Y, Li W, Yu C (2014) Ultrasensitive electrochemical biosensor based on graphite oxide, Prussian blue, and PTC-NH2 for the detection of alpha2,6-sialylated glycans in human serum. Biosens Bioelectron 62:79

    Article  CAS  Google Scholar 

  11. Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ (1987) Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch Biochem Biophys 254:1

    Article  CAS  Google Scholar 

  12. Geisler C, Jarvis DL (2011) Effective glycoanalysis with Maackia Amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21:988

    Article  CAS  Google Scholar 

  13. Kang J, Park HM, Kim YW, Kim YH, Varghese S, Seok HK, Kim YG, Kim SH (2014) Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism. Eur cells mater 28:387

    CAS  Google Scholar 

  14. Saarinen J, Welgus HG, Flizar CA, Kalkkinen N, Helin J (1999) N-glycan structures of matrix metalloproteinase-1 derived from human fibroblasts and from HT-1080 fibrosarcoma cells. Eur J Biochem 259:829

    Article  CAS  Google Scholar 

  15. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780

    Article  CAS  Google Scholar 

  16. Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Y. Lin (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres, Anal Chem 82: 2989

  17. Yuan G, Yu C, Xia C, Gao L, Xu W, Li W, He J (2015) A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels. Biosens Bioelectron 72:237

    Article  CAS  Google Scholar 

  18. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787

    Article  CAS  Google Scholar 

  19. Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238

    Article  CAS  Google Scholar 

  20. Shahrokhian S, Ghalkhani M, Adeli M, Amini MK (2009) Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosens Bioelectron 24:3235

    Article  CAS  Google Scholar 

  21. Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc 134:15849

    Article  CAS  Google Scholar 

  22. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  23. Kim DM, Rahman MA, Do MH, Ban C, Shim YB (2010) An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens Bioelectron 25:1781

    Article  CAS  Google Scholar 

  24. Elshafey R, Tlili C, Abulrob A, Tavares AC, Zourob M (2013) Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker murine double minute 2 in brain tissue. Biosens Bioelectron 39:220

    Article  CAS  Google Scholar 

  25. Zhao Y, He J, Yuan G, Xia C, Li Y, Yu C (2015) Rapidly accomplished femtomole soluble CD40 ligand detection in human serum: a “green” homobifunctional agent coupled with reduced graphene oxide-tetraethylene pentamine as platform. RSC Adv 5:88392

    Article  CAS  Google Scholar 

  26. Zhu C, Guo S, Dong S (2012) PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv Mater 24:2326

    Article  CAS  Google Scholar 

  27. Xu W, He J, Gao L, Zhang J, Yu C (2015) Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles. Microchim Acta 182:2115

    Article  CAS  Google Scholar 

  28. Zhang J, He J, Xu W, Gao L, Guo Y, Li W, Yu C (2015) A novel immunosensor for detection of beta-galactoside alpha-2, 6-sialyltransferase in serum based on gold nanoparticles loaded on Prussian blue-based hybrid nanocomposite film. Electrochim Acta 156:45

    Article  CAS  Google Scholar 

  29. Qiu W, Xu H, Takalkar S, Gurung AS, Liu B, Zheng Y, Guo Z, Baloda M, Baryeh K, Liu G (2015) Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron 64:367

    Article  CAS  Google Scholar 

  30. Zhang X, Lu W, Shen J, Jiang Y, Han E, Dong X, Huang J (2015) Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker. Biosens Bioelectron 74:291

    Article  CAS  Google Scholar 

  31. Yao Y, Bai X, Shiu KK (2012) Spontaneous deposition of Prussian blue on multi-walled carbon nanotubes and the application in an amperometric biosensor. Nanomaterials 2:428

    Article  CAS  Google Scholar 

  32. Xie SY, Huang RB, Zheng LS (1999) Separation and identification of perchlorinated polycyclic aromatic hydrocarbons by high-performance liquid chromatography and ultraviolet absorption spectroscopy. J Chromatogr A 864:173

    Article  CAS  Google Scholar 

  33. Gao Q, Han J, Ma Z (2013) Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 49:323

    Article  CAS  Google Scholar 

  34. Li Y, Fang L, Cheng P, Deng J, Jiang L, Huang H, Zheng J (2013) An electrochemical immunosensor for sensitive detection of Escherichia Coli O157:H7 using C60 based biocompatible platform and enzyme functionalized Pt nanochains tracing tag. Biosens Bioelectron 49:485

    Article  CAS  Google Scholar 

  35. Li Y, He J, Niu Y, Yu C (2015) Ultrasensitive electrochemical biosensor based on reduced graphene oxide-tetraethylene pentamine-BMIMPF6 hybrids for the detection of alpha2,6-sialylated glycans in human serum. Biosens Bioelectron 74:953

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Natural Science Foundation of China (81370403, 21205146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yu.

Ethics declarations

The author(s) declare that they have no competing interests

Additional information

Junlin He and Yazhen Niu contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 1.08 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., He, J., Li, Y. et al. Determination of α2,3-sialylated glycans in human serum using a glassy carbon electrode modified with carboxylated multiwalled carbon nanotubes, a polyamidoamine dendrimer, and a glycan-recognizing lectin from Maackia Amurensis . Microchim Acta 183, 2337–2344 (2016). https://doi.org/10.1007/s00604-016-1873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1873-9

Keywords

Navigation