Skip to main content
Log in

A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a differential pulse voltammetric technique for the simultaneous determination of guanine (Gu) and adenine (Ad). A glassy carbon electrode (GCE) was modified with a chitosan film containing functionalized diamond nanoparticles (f-DNPs/CS) of 10–20 nm average size. The materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry. The modified glassy carbon electrode (f-DNPs/CS/GCE) is shown to display high electrocatalytic activity toward the oxidation and determination of Gu and Ad, respectively, with oxidation peaks that are strongest at 0.72 ± 0.02 V for Gu and at 1.02 ± 0.02 V for Ad (both versus Ag/AgCl). Responses in differential pulse voltammetry are linear to Gu in the 0.05–30.0 μM concentration range, and to Ad in the 0.1–14.0 μM concentration range, and the detection limits (at an S/N ratio of 3) are 2 nM and 10 nM for Gu and Ad, respectively. The f-DNPs/CS/GCE was successfully applied to the simultaneous determination of Gu and Ad in fish sperm DNA and typically gave 97.5 and 98.8 % recoveries.

Electrooxidation of guanine (Gu) and adenine (Ad) at a bare glassy carbon electrode (GCE; blue), and at a GCE modified with a chitosan film containing functionalized diamond nanoparticles (f-DNPs/CS/GCE; red).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pumera M (2014) Nanomaterials for electrochemical sensing and biosensing, CRC Press, Ordibehesht 22, 1393 AP

  2. Musameh MM (2005) Carbon nanotubes based electrochemical sensors and biosensors. New Mexico State University Press, New Mexico

    Google Scholar 

  3. Spitsyn BV, Denisov SA, Skorik NA, Chopurova AG, Parkaeva SA, Belyakova LD, Larionov OG (2010) The physical-chemical study of detonation nanodiamond application in adsorption and chromatography. Diam Relat Mater 19:123

    Article  CAS  Google Scholar 

  4. Barras A, Szunerits S, Marcon L, Monfilliette-Dupont N, Boukherroub R (2010) Functionalization of diamond nanoparticles using “click” chemistry. Langmuir 26:13168

    Article  CAS  Google Scholar 

  5. Szunerits S, Boukherroub R (2008) Different strategies for functionalization of diamond surfaces. J Solid State Electrochem 12:1205

    Article  CAS  Google Scholar 

  6. Bursill LA, Fullerton AL, Bourgeois LN (2001) Size and surface structure of diamond nano- crystals. Int J Mod Phys B 15:4087

    Article  CAS  Google Scholar 

  7. Chang IP, Hwang KC, Ho JA, Lin C-C, Hwu RJR, Horng JC (2010) Facile surface functionalization of nanodiamonds. Langmuir 26:3685

    Article  CAS  Google Scholar 

  8. Habibi B, Jahanbakhshi M (2015) Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J Iran Chem Soc 12:1431

    Article  CAS  Google Scholar 

  9. Peteu SF, Whitman BW, GalliganJJ SGM (2016) Electrochemical detection of peroxynitrite using hemin–PEDOT functionalized boron-doped diamond microelectrode. Analyst 141:1796

    Article  CAS  Google Scholar 

  10. Wang Y, Huang H, Zang J, Meng F, Dong L, Su J (2012) Electrochemical behavior of fluorinated and aminated nanodiamond. Int J Electrochem Sci 7:6807

    CAS  Google Scholar 

  11. Gopalan AI, Komathi S, Anand GS, Lee KP (2013) Nanodiamond based sponges with entrapped enzyme: a novel electrochemical probe for hydrogen peroxide. Biosens Bioelectron 46:136

    Article  CAS  Google Scholar 

  12. Qureshi A, Gurbuz Y, Howell M, Kang WP, Davidson JL (2010) Nanocrystalline diamond film for biosensor applications. Diam Relat Mater 19:457

    Article  CAS  Google Scholar 

  13. Azevedo AF, Baldan MR, Ferreira NG (2012) Nanodiamond films for applications in electrochemical systems. Int J Electrochem 2012: 508453, 16

  14. Sun W, Li Y, Duan Y, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24:988

    Article  CAS  Google Scholar 

  15. Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta 73:269

    Article  CAS  Google Scholar 

  16. Kai M, Ohkura Y, Yonekura S, Iwasaki M (1994) Chemiluminescence determination of guanine and its nucleosides and nucleotides using phenylglyoxal. Anal Chim Acta 287:75

    Article  CAS  Google Scholar 

  17. Xu DK, Hua L, Chen HY (1996) Determination of purine bases by capillary zone electrophoresis with wall-jet amperometric detection. Anal Chim Acta 335:95

    Article  CAS  Google Scholar 

  18. Hamberg M, Zhang LY (1995) Quantitative determination of 8-hydroxyguanine and guanine by isotope dilution mass spectrometry. Anal Biochem 229:336

    Article  CAS  Google Scholar 

  19. Wang G, Shi G, Chen X, Yao R, Chen F (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182:315

    Article  CAS  Google Scholar 

  20. Zou L, Li Y, Ye B (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2]triazine Langmuir-Blodgett film. Microchim Acta 173:285

    Article  CAS  Google Scholar 

  21. Svorc L, Kalcher K (2014) Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sensors Actuators B 194:332

    Article  CAS  Google Scholar 

  22. Feng LJ, Zhang XH, Liu P, Xiong XY, Wang SF (2011) An electrochemical sensor based on single-stranded DNA-poly(sulfosalicylic acid) composite film for simultaneous determination of adenine, guanine, and thymine. Anal Biochem 419:71

    Article  CAS  Google Scholar 

  23. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B 82:543

    Article  CAS  Google Scholar 

  24. Tu X, Luo X, Luo S, Yan L, Zhang F, Xie Q (2010) Novel carboxylation treatment and characterization of multi-walled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA. Microchim Acta 169:33

    Article  CAS  Google Scholar 

  25. Ghavami R, Salimi A, Navaee A (2011) SiC nanoparticles-modified glassy carbon electrode for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 26:3864

    Article  CAS  Google Scholar 

  26. Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685

    Article  CAS  Google Scholar 

  27. Liu T, Zhu XB, Cui L, Ju P, Qu XJ, Ai SY, Simultaneous determination of adenine and guanine utilizing PbO2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. J Electroanal Chem 651:216

  28. Ling MN, Kao QL, Hong MS, Yi BW, Wei JK, Si YB (2013) Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano Au/poly (SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sensors Actuators B 178:10

    Article  Google Scholar 

  29. Huang KJ, Wang L, Wang HB, Gan T, Wu YY, Li J, Liu YM (2013) Electrochemical biosensor based on silver nanoparticles–polydopamine–graphene nanocomposite for sensitive determination of adenine and guanine. Talanta 114:43

    Article  CAS  Google Scholar 

  30. Arvand M, Motaghed Mazhabib R, Niazi A (2013) Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles- magnesium (II) doped natrolite zeolite. Electrochim Acta 89:669

    Article  CAS  Google Scholar 

  31. Wei Y, Huang QA, Li MG, Huang X, Fanga B, Wang L (2011) CeO2 nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine. Electrochim Acta 56:8571

    Article  CAS  Google Scholar 

  32. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid- composite film modified glassy carbon electrode. Electrochim Acta 80:346

    Article  CAS  Google Scholar 

  33. Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45:1707

    Article  CAS  Google Scholar 

  34. Liu H, Wang G, Chena D, Zhang W, Li C, Fang B (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors Actuators B 128:414

    Article  CAS  Google Scholar 

  35. Zhang X, Liang X, Xu M, Bao X, Wang F, Yang Z (2012) Electrodeposit nano-copper oxide on glassy carbon electrode for simultaneous detection of guanine and adenine. J Appl Electrochem 42:375

    Article  CAS  Google Scholar 

  36. Wei Y, Luo L, Ding Y, Liu X, Chu Y (2013) A glassy carbon electrode modified with poly (eriochrome black T) for sensitive dtermination of adenine and guanine. Microchim Acta 180:887

    Article  CAS  Google Scholar 

  37. Wang Z, Xiao S, Chen Y (2006) β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J Electroanal Chem 589:237

    Article  CAS  Google Scholar 

  38. Arvand M, Ghodsi N, Zanjanchi MA (2016) A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine. Biosens Bioelectron 77:837

    Article  CAS  Google Scholar 

  39. Garrett RH, Krishnan CM (1995) Biochemistry. Saunders College Publishing, Orlando

    Google Scholar 

  40. Bruhne K, Kumar KV, Fecht HJ, Gluche P, Floter A (2005) Nanocrystalline HF-CVD -grown diamond and its industrial applications. Rev Adv Mater Sci 10:224

    Google Scholar 

  41. Xinbo CL, Chintal D, Somenath M (2013) Functionalized nanodiamond as a charge transporter in organic solar cells. Sol Energy 91:204

    Article  Google Scholar 

  42. Abbaspour A, Noori A (2008) Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes. Analyst 133:1664

    Article  CAS  Google Scholar 

  43. Li Q, Batchelor-McAuley C, Compton RG (2010) Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. J Phys Chem B 114:7423

    Article  CAS  Google Scholar 

  44. Davision JN (1972) The biochemistry of the nucleic acids, 7th edn. Cox & Nyman, Norfolk, p. 129

    Google Scholar 

  45. Shahrokhian S, Rastgar S, Amini MK, Adeli M (2012) Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry 86:78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Office of Azarbaijan Shahid Madani University, Tabriz, Iran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Jahanbakhshi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, B., Jahanbakhshi, M. A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine. Microchim Acta 183, 2317–2325 (2016). https://doi.org/10.1007/s00604-016-1868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1868-6

Keywords

Navigation