Skip to main content
Log in

A selective and regenerable voltammetric aptasensor for determination of homocysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an electrochemical aptasensor for the amino acid homocysteine (hCys). A gold electrode was modified with a highly specific aptamer against hCys (a 66-base DNA oligonucleotide) acting as the recognition probe. The method is highly selective over cysteine and methionine. The effects of accumulation time, type and concentration of accumulation buffer and pH, type and concentration of stripping buffer were studied. Under optimized conditions and a working potential of 1.07 V (vs. Ag/AgCl), the response to hCys is linear in the 0.2 to 10 μM concentration range. The detection limit is 10 nM, and the relative standard deviation is 3.1 % (at 1 μM of hCys). The electrode can be regenerated by immersing it into a 3 M solution of urea solution. The method was applied to the determination of hCys in (spiked) serum and urine and gave recoveries of 88.5 and 96.5 %, respectively.

A label-free aptasensor for electrochemical detection of homocysteine was designed. A gold electrode was modified with a thiolated aptamer by self-assembly. The assembled interface enables detection of homocysteine by differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Finkelstein JD, Martin JJ (2000) Homocysteine. Int J Biochem Cell Biol 32:385–389

    Article  CAS  Google Scholar 

  2. Savage DG, Lindenbaum J, Stabler SP, Allen RH (1994) Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 96(3):239–246

    Article  CAS  Google Scholar 

  3. Stabler S, Marcell P, Podell E, Allen R, Savage D, Lindenbaum J (1998) Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 81(2):466–474

    Article  Google Scholar 

  4. Rasmussen K, Mùller J (2000) Total homocysteine measurement in clinical practice. Ann Clin Biochem 37:627–648

    Article  CAS  Google Scholar 

  5. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  CAS  Google Scholar 

  6. Zhang G, Liu D, Shuang S, Choi MMF (2006) A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform. Sensors Actuators B 114(2):936–942

    Article  CAS  Google Scholar 

  7. Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Article  CAS  Google Scholar 

  8. Nekrassova O, Lawrence NS, Compton RG (2003) Analytical determination of homocysteine: a review. Talanta 60:1085–1095

    Article  CAS  Google Scholar 

  9. Frick B, Schrocksnadel K, Neurauter G, Wirleitner B, Artner-Dworzaka E, Fuchs D (2003) Rapid measurement of total plasma homocysteine by HPLC. Clin Chim Acta 331:19–23

    Article  CAS  Google Scholar 

  10. Głowacki R, Borowczyk K, Bald E, Jakubowski H (2010) On-column derivatization with o-phthaldialdehyde for fast determination of homocysteine in human urine. Anal Bioanal Chem 396(6):2363–2366

    Article  Google Scholar 

  11. Yao X, Wang Y, Chen G (2007) Simultaneous determination of aminothiols, ascorbic acid and uric acid in biological samples by capillary electrophoresis with electrochemical detection. Biomed Chromatogr 21:520–526

    Article  CAS  Google Scholar 

  12. Windelberg A, Arseth O, Kvalheim G, Ueland PM (2005) Automated assay for the determination of methylmalonic acid, total homocysteine, and related amino acids in human serum or plasma by means of methylchloroformate derivatization and gas chromatography–mass spectrometry. Clin Chem 51(11):2103–2109

    Article  CAS  Google Scholar 

  13. Andersson A, Brattström L, Isaksson A, Israelsson B, Hultberg B (1989) Determination of homocysteine in plasma by ion-exchange chromatography. Scand J Clin Lab Invest 49:445–449

    Article  CAS  Google Scholar 

  14. Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanich N, Chailapakul O (2011) Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay. Talanta 85(2):870–876

    Article  CAS  Google Scholar 

  15. Gui R, Wang Y, Sun J (2014) Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta 181(11):1231–1238

    Article  CAS  Google Scholar 

  16. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim. Acta, First online: 12 February 2016

  17. Rusin O, Luce NNS, Agbaria RA, Escobedo JO, Jiang S, Warner IM, Dawan FB, Lian K, Strongin RM (2004) Visual detection of cysteine and homocysteine. J Am Chem Soc 126(2):438–439

    Article  CAS  Google Scholar 

  18. Frantzen F, Faaren AL, Alfheim I, Nordhei AK (1998) Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem 44(2):311–316

    CAS  Google Scholar 

  19. Lee PT, Lowinsohn D, Compton RG (2014) The selective electrochemical detection of homocysteine in the presence of glutathione, cysteine, and ascorbic acid using carbon electrodes. Analyst 139:3755–3762

    Article  CAS  Google Scholar 

  20. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  21. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  22. Zhang YL, Huang Y, Jiang JH, Shen GL, Yu RQ (2007) Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J Am Chem Soc 129:15448–15449

    Article  CAS  Google Scholar 

  23. Chen D, Yao D, Xie C, Liu D (2014) Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42:109–115

    Article  Google Scholar 

  24. Song W, Li H, Liang H, Qiang W, Xu D (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86(5):2775–2783

    Article  CAS  Google Scholar 

  25. Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju SB, Chen W (2013) Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Anal Chem 85(22):10842–10849

    Article  CAS  Google Scholar 

  26. Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchim Acta 180:109–115

    Article  CAS  Google Scholar 

  27. McKeague M, Foster A, Miguel Y, Giamberardino A, Verdin C, Chan JYS, DeRosa MC (2013) Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Adv 3:24415–24422

    Article  CAS  Google Scholar 

  28. Luo L, Zhang Z, Ding Y, Deng D, Zhub X, Wang Z (2013) Label-free electrochemical impedance genosensor based on 1-aminopyrene/graphene hybrids. Nanoscale 5:5833–5840

    Article  CAS  Google Scholar 

  29. Yang X, Bing T, Mei H, Fang C, Caoa Z, Shangguan D (2011) Characterization and application of a DNA aptamer binding to L-tryptophan. Analyst 136:577–585

    Article  CAS  Google Scholar 

  30. Mohamadi M, Mostafavi A, Mahani MT (2015) Electrochemical determination of biophenol oleuropein using a simple label-free DNA biosensor. Bioelectrochemistry 101:52–57

    Article  CAS  Google Scholar 

  31. Salehzadeh H, Mokhtari B, Nematollahi D (2014) Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione. Electrochim Acta 123:353–361

    Article  CAS  Google Scholar 

  32. Fouladgar M, Mohammadzadeh S, Nayeri H (2014) Electrochemical determination of homocysteine using carbon nanotubes modified paste electrode and isoprenaline as a mediator. Russ J Electrochem 50(10):981–988

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Research Council of Shahid Bahonar University of Kerman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mirzaei.

Ethics declarations

The authors declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, J., Mirzaei, M. & Torkzadeh-Mahani, M. A selective and regenerable voltammetric aptasensor for determination of homocysteine. Microchim Acta 183, 2205–2210 (2016). https://doi.org/10.1007/s00604-016-1852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1852-1

Keywords

Navigation