Skip to main content
Log in

An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We on report an eco-friendly molecularly imprinted material based on carbon dots (C-dots) via a facile and efficient sol–gel polymerization for selective fluorescence detection of 4-nitrophenol (4-NP). The amino-modified C-dots were firstly synthesized by a hydrothermal process using citric acid as the carbon source and poly(ethyleneimine) as the surface modifier, and then after a sol–gel molecular imprinting process, the molecularly imprinted fluorescence material was obtained. The material (MIP-C-dots) showed strong fluorescence from C-dots and high selectivity due to the presence of a molecular imprint. After the detection conditions were optimized, the relative fluorescence intensity (F0/F) of MIP-C-dots presented a good linearity with 4-NP concentrations in the linear range of 0.2 − 50 μmol L-1 with a detection limit (3σ/k) of 0.06 μmol L-1. In addition, the correlation coefficient was 0.9978 and the imprinting factor was 2.76. The method was applicable to the determination of trace 4-NP in Yangtze River water samples and good recoveries from 92.6–107.3 % were obtained. The present study provides a general strategy to fabricate materials based on C-dots with good fluorescence property for selective fluorescence detection of organic pollutants.

An eco-friendly molecularly imprinted fluorescence sensor based on carbon dots (C-dots) (poly(ethyleneimine) (PEI) as the surface modifier) was prepared via a facile and efficient sol–gel polymerization (3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetramethoxysilane (TEOS) as the cross linker) for selective fluorescence detection of 4-nitrophenol (4-NP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yin H, Zhou Y, Han R, Qiu Y, Ai S, Zhu L (2012) Electrochemical oxidation behavior of 2,4-dinitrophenol at hydroxylapatite film-modified glassy carbon electrode and its determination in water samples. J Solid State Electrochem 16:75–82

    Article  CAS  Google Scholar 

  2. Hu S, Xu C, Wang G, Cu D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    Article  CAS  Google Scholar 

  3. Li S, Du D, Huang J, Tu H, Yang Y, Zhang A (2013) One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 138:2761–2768

    Article  CAS  Google Scholar 

  4. Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165:10–17

    Article  CAS  Google Scholar 

  5. Guo XF, Wang ZH, Zhou SP (2004) The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64:135–139

    Article  CAS  Google Scholar 

  6. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480

    Article  Google Scholar 

  7. Yuan C, Zhang K, Zhang Z, Wang S (2012) Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Anal Chem 84:9792–9801

    Article  CAS  Google Scholar 

  8. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  9. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  10. Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  CAS  Google Scholar 

  11. Yan X, Cui X, Li B, Li L (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10:1869–1873

    Article  CAS  Google Scholar 

  12. Lu WB, Qin XY, Liu S, Chang GH, Zhang YW, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions. Anal Chem 84:5351–5357

    Article  CAS  Google Scholar 

  13. Huang H, Li CG, Zhu SJ, Wang HL, Chen CL, Wang ZR, Bai TY, Shi Z, Feng SH (2014) Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir 30:13542–13548

    Article  CAS  Google Scholar 

  14. Gao ZH, Lin ZZ, Chen XM, Lai ZZ, Huang ZY (2016) Carbon dots-based fluorescent probe for trace Hg2+ detection in water sample. Sens Actuat B: Chem 222:965–971

    Article  CAS  Google Scholar 

  15. Chen LX, Xu SF, Li JH (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    Article  CAS  Google Scholar 

  16. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  17. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  18. Li Y, Ding MJ, Wang S, Wang RY, Wu XL, Wen TT, Yuan LH, Dai P, Lin YH, Zhou XM (2011) Preparation of imprinted polymers at surface of magnetic nanoparticles for the selective extraction of tadalafil from medicines. ACS Appl Mater Interfaces 3:3308–3315

    Article  CAS  Google Scholar 

  19. Yin JF, Cui Y, Yang GL, Wang HL (2010) Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release. Chem Commun 46:7688–7690

    Article  CAS  Google Scholar 

  20. Xu SF, Chen LX, Li JH, Qin W, Ma J (2011) Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition-fragmentation chain transfer surface imprinting. J Mater Chem 21:12047–12053

    Article  CAS  Google Scholar 

  21. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25:1166–1172

    Article  CAS  Google Scholar 

  22. Orozco J, Cortés A, Cheng GZ, Sattayasamitsathit S, Gao W, Feng XM, Shen YF, Wang J (2013) Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc 135:5336–5339

    Article  CAS  Google Scholar 

  23. Liu HL, Fang GZ, Li CM, Pan MF, Liu CC, Fan C, Wang S (2012) Molecularly imprinted polymer on ionic liquid-modified C-dotse/ZnS quantum dots for the highly selective and sensitive optosensing of tocopherol. J Mater Chem 22:19882–19887

    Article  CAS  Google Scholar 

  24. Wei X, Zhou ZP, Hao TF, Li HJ, Dai JD, Gao L, Zheng XD, Wang JX, Yan YS (2015) Simple synthesis of thioglycolic acid-coated CdTe quantum dots as probes for Norfloxacin lactate detection. J Lumin 161:47–53

    Article  CAS  Google Scholar 

  25. Wei X, Zhou ZP, Hao TF, Li HJ, Yan YS (2015) Molecularly imprinted polymer nanospheres based on Mn-doped ZnS QDs via precipitation polymerization for room-temperature phosphorescence probing of 2,6-dichlorophenol. RSC Adv 5:19799–19806

    Article  CAS  Google Scholar 

  26. Wei X, Zhou ZP, Hao TF, Li HJ, Xu YQ, Lu K, Wu YL, Dai JD, Pan JM, Yan YS (2015) Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol. Anal Chim Acta 870:83–91

    Article  CAS  Google Scholar 

  27. Wei X, Hao TF, Xu YQ, Lu K, Li HJ, Yan YS, Zhou ZP (2015) Swelling technique inspired synthesis of fluorescence composite sensor for highly selective detection of Bifenthrin. RSC Adv 5:79511–79518

    Article  CAS  Google Scholar 

  28. Wei X, Hao TF, Xu YQ, Lu K, Li HJ, Yan YS, Zhou ZP (2016) Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of λ-cyhalothrin. Sens Actuat B: Chem 224:315–324

    Article  CAS  Google Scholar 

  29. Wei X, Zhou ZP, Hao TF, Xu YQ, Li HJ, Lu K, Dai JD, Zheng XD, Gao L, Wang JX, Yan YS, Zhu YZ (2015) Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers. Microchim Acta 182:1527–1534

    Article  CAS  Google Scholar 

  30. Rounaghi G, Kakhki RM, Azizi-toupkanloo H (2012) Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mat Sci Eng C-Mater 32:172–177

    Article  CAS  Google Scholar 

  31. Gu YE, Zhang Y, Zhang F, Wei J, Wang C, Du Y, Ye W (2010) Investigation of photoelectrocatalytic activity of Cu2O nanoparticles for p-nitrophenol using rotating ring-disk electrode and application for electrocatalytic determination. Electrochimi Acta 56:953–958

    Article  CAS  Google Scholar 

  32. Xiao W, Xiao D, Yuan H (2007) A functionalized mesoporous silica sensor for the determination of p-nitrophenol or 2,4-dinitrophenol based on fluorescence quenching. Sens Lett 5:445–449

    Article  CAS  Google Scholar 

  33. Moraes FC, Tanimoto ST, Salazar-Banda GR, Machado SAS, Mascaro LH (2009) A new indirect electroanalytical method to monitor the contamination of natural waters with 4-nitrophenol using multiwall carbon nanotubes. Electroanalysis 21:1091–1098

    Article  CAS  Google Scholar 

  34. Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

  35. Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21277063, No. 21407057 and No. 21407064), National Basic Research Program of China (973 Program, 2012CB821500), Natural Science Foundation of Jiangsu Province (No. BK20140535), National Postdoctoral Science Foundation (No. 2014 M561595), Postdoctoral Science Foundation funded Project of Jiangsu Province (No. 1401108C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Yan.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Wei, X., Nie, Y. et al. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183, 2197–2203 (2016). https://doi.org/10.1007/s00604-016-1851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1851-2

Keywords

Navigation