Skip to main content
Log in

Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The sulfur-containing reagents dithizone, 2,3-dimercapto-1-propanol, 2-thenoyltrifluoroacetone, 1,3,4-thiadiazole-2,5-dithiol, and 1-(2-thiazolylazo)-2-naphthol (TAN) were first examined with respect to their stabilizing effect on CdTe nanocrystals. The indicator TAN was found to best passivate the surface of CdTe NCs if added during synthesis of the NCs at 100 °C. These NCs (referred to as NC-1) have an emission that peaks at 430 nm, and a quantum yield (QY) of 25 %. If, however, TAN-capped particles are prepared in presence of an ionic liquid at room temperature, the QY of such nanocrystals (referred to as NC-2) is increased by 80 % and the emission peak is shifted to 460 nm. The NC-1 particles bind Ag(I), Pb(II), Hg(II), Fe(III), Cr(III), and Cu(II) in phosphate buffer of pH 6.5 while NC-2 particles bind Cu(II) only. Binding of metal ions is associated with a drop in fluorescence intensity. In case of NC-1, quenching is observed in the 23.3 nM to 23.3 μM Cu(II) concentration range with detection limit of 0.5 nM. In case of NC-2, quenching occurs in the 233 nM to 233 μM Cu(II) concentration range with detection limit of 5.0 nM. The method was applied to the determination of Cu(II) in spiked biosamples, and recoveries of Cu(II) (at a 233 nM level) in BSA and fetal bovine serum using NC-2 are 95 % and 92 %. This is better than the recoveries from the same media with NC-1 (70 % and 32 %). These findings demonstrate that the NC-2 material is superior in terms of selectivity and stability but inferior in terms of detection limit.

1-(2-Thiazolylazo)-2-naphthol was first used as a passivant in the synthesis of CdTe nanocrystals in water (NCw) and an ionic liquid (NCIL). NCIL had a higher quantum yield and specificity for Cu2+, a higher recovery of Cu2+ from BSA and FBS matrices, and is more stable than NCw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim JY, Voznyy O, Zhitomirsky D, Sargent EH (2013) 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv Mater 25:4986–5010

    Article  CAS  Google Scholar 

  2. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  Google Scholar 

  3. Rogach AL, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsen-Ges Phys Chem 100:1772–1778

    Article  CAS  Google Scholar 

  4. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  5. Guo J, Yang W, Wang C (2005) Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J Phys Chem B 109:17467–17473

    Article  CAS  Google Scholar 

  6. Shavel A, Gaponik N, Eychmüller A (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110:19280–19284

    Article  CAS  Google Scholar 

  7. Bao H, Gong Y, Li Z, Gao M (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16:3853–3859

    Article  CAS  Google Scholar 

  8. Wang C, Zhang H, Zhang J, Li M, Sun M, Yang B (2007) Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals. J Phys Chem C 111:2465–2469

    Article  CAS  Google Scholar 

  9. He Y, Sai LM, Lu HT, Hu M, Lai WY, Fan QL, Wang LH, Huang W (2007) Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem Mater 19:359–365

    Article  CAS  Google Scholar 

  10. Antonietti M, Kuang DB, Smarsly B, Yong Z (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992

    Article  CAS  Google Scholar 

  11. Nakashima T, Kawai T (2005) Quantum dots-ionic liquid hybrids: efficient extraction of cationic CdTe nanocrystals into an ionic liquid. Chem Commun 1643–1645

  12. Nakashima T, Sakakibara T, Kawai T (2005) Highly luminescent CdTe nanocrystal-polymer composites based on ionic liquid. Chem Lett 24:1410–1411

    Article  Google Scholar 

  13. Nakashima T, Nonoguchi Y, Kawai T (2008) Ionic liquid-based luminescent composite materials. Polym Adv Technol 19:1401–1405

    Article  CAS  Google Scholar 

  14. Borriello C, Concilio S, Minarini C, Piotto S, Luccio TD (2013) Optical properties of ionic liquid passivated CdSe/ZnS quantum dots dispersed in POC copolymer. Polym Compos 34:1471–1476

    Article  CAS  Google Scholar 

  15. Chao MR, Chang YZ, Chen JL (2013) Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. Biosens Bioelectron 42:397–402

    Article  CAS  Google Scholar 

  16. Choi SY, Shim JP, Kim DS, Kim TY, Suh KS (2012) Aqueous synthesis of CdTe quantum dot using dithiol-functionalized ionic liquid. J Nanomater 519458

  17. Zhang H, Qiao H, Li F, Xu D, Wang J (2013) Enhanced photochemical stability of CdSe/CdS quantum dots capped by imidazolium-based ionic liquids. J Nanosci Nanotechnol 13:2159–2165

    Article  CAS  Google Scholar 

  18. Sekhar MC, Santhosh K, Kumar JP, Mondal N, Soumya S, Samanta A (2014) CdTe quantum dots in ionic liquid: stability and hole scavenging in the presence of a sulfide salt. J Phys Chem C 118:18481–18487

    Article  CAS  Google Scholar 

  19. Liu H, Fang G, Li C, Pan M, Liu C, Fan C, Wang S (2012) Molecularly imprinted polymer on ionic liquid-modified CdSe/ZnS quantum dots for the highly selective and sensitive optosensing of tocopherol. J Mater Chem 22:19882–19887

    Article  CAS  Google Scholar 

  20. Liu H, Fang G, Zhu H, Li C, Liu C, Wang S (2013) A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E. Biosens Bioelectron 47:127–132

    Article  CAS  Google Scholar 

  21. Li DY, Wang YZ, Zhao XL, He XW, Li WY, Zhang YK (2014) Facile synthesis of ionic liquid functionalized silica capped CdTe quantum dots for selective recognition and detection of hemoproteins. J Mater Chem B 2:5659–5665

    Article  CAS  Google Scholar 

  22. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64

    Article  CAS  Google Scholar 

  23. Xie HY, Liang JG, Zhang ZL, Liu Y, He ZK, Pang DW (2004) Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta A 60:2527–2530

    Article  Google Scholar 

  24. Wang JH, Wang HQ, Zhang HL, Li XQ, Hua XF, Cao YC, Huang ZL, Zhao YD (2007) Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal Bioanal Chem 388:969–974

    Article  CAS  Google Scholar 

  25. Chao MR, Hu CW, Chen JL (2014) Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped CdTe quantum dots. Microchim Acta 181:1085–1091

    Article  CAS  Google Scholar 

  26. Chao MR, Hu CW, Chen JL (2014) Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron 61:471–477

    Article  CAS  Google Scholar 

  27. Eaton DF (1988) Reference materials for fluorescence measurement. Pure Appl Chem 60:1107–1114

    Article  CAS  Google Scholar 

  28. Borchert H, Talapin DV, Gaponik N, McGinley C, Adam S, Lobo A, Möller T, Weller H (2003) Relations between the photoluminescence efficiency of CdTe nanocrystals and theirsurface properties revealed by synchrotron XPS. J Phys Chem B 107:9662–9668

    Article  CAS  Google Scholar 

  29. Poznyak SK, Osipovich NP, Shavel A, Talapin DV, Gao M, Eychmüller A, Gaponik N (2005) Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. J Phys Chem B 109:1094–1100

    Article  CAS  Google Scholar 

  30. Wuister SF, de M Donegá C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–17397

    Article  CAS  Google Scholar 

  31. Washington II AL, Strouse GF (2008) Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J Am Chem Soc 130:8916–8922

    Article  CAS  Google Scholar 

  32. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Article  CAS  Google Scholar 

  33. Zhang H, Zhou Z, Yang B, Gao MY (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107:8–13

    Article  CAS  Google Scholar 

  34. Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater Sci Eng B 69:435–440

    Article  Google Scholar 

  35. Anderson RG, Nickless G (1967) Heterocyclic azo dyestuffs in analytical chemistry. Analyst 92:207–238

    Article  CAS  Google Scholar 

  36. Lee W, Lee SE, Lee CH, Kim YS, Lee YI (2001) A chelating resin containing 1-(2-thiazolylazo)-2-naphthol as the functional group; synthesis and sorption behavior for trace metal ions. Microchem J 70:195–203

    Article  CAS  Google Scholar 

  37. Tokalıoğlu Ş, Yılmaz Ş, Kartal Ş (2009) Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180. Environ Monit Assess 152:369–377

    Article  Google Scholar 

  38. Hosseini-Bandegharaei A, Hosseini MS, Jalalabadi Y, Sarwghadi M, Nedaie M, Taherian A, Ghaznavi A, Eftekhari A (2011) Removal of Hg(II) from aqueous solutions using a novel impregnated resin containing 1-(2-thiazolylazo)-2-naphthol (TAN). Chem Eng J 168:1163–1173

    Article  CAS  Google Scholar 

  39. Goodwin WE, Rao RR, Chatt A (2013) Reversed-phase extraction chromatography–neutron activation analysis (RPEC–NAA) for copper in natural waters using Amberlite XAD-4 resin coated with 1-(2-thiazolylazo)-2-naphthol. J Radioanal Nucl Chem 296:489–494

    Article  CAS  Google Scholar 

  40. Chen J, Gao YH, Xu ZB, Wu GH, Chen YC, Zhu CQ (2006) A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577:77–84

    Article  CAS  Google Scholar 

  41. Laferrière M, Galian RE, Maurel V, Scaiano JC (2006) Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals. Chem Commun 257–259

  42. Ruedas-Rama MJ, Hall EAH (2009) Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese. Analyst 134:159–169

    Article  CAS  Google Scholar 

  43. Liu FC, Chen YM, Lin JH, Tseng WL (2009) Synthesis of highly fluorescent glutathione-capped ZnxHg1-xSe quantum dot and its application for sensing copper ion. J Colloid Interface Sci 337:414–419

    Article  CAS  Google Scholar 

  44. Mohammad-Rezaei R, Razmi H, Abdolmohammad-Zadeh H (2013) D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II). Luminescence 28:503–509

    Article  CAS  Google Scholar 

  45. Jin LH, Han CS (2014) Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal Chem 86:7209–7213

    Article  CAS  Google Scholar 

  46. Ding Y, Shen SZ, Sun H, Sun K, Liu F (2014) Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens Actuators B Chem 203:35–43

    Article  CAS  Google Scholar 

  47. Lima AS, Rodrigues SSM, Korn MGA, Ribeiro DSM, Santos JLM, Teixeira LSG (2014) Determination of copper in biodiesel samples using CdTe-GSH quantum dots as photoluminescence probes. Microchem J 117:144–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work by the National Science Council of Taiwan under Grant no. NSC–101–2113–M–039–001–MY3 and the China Medical University under Grant no. CMU103-S-13 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Lian Chen.

Electronic supplementary material

ESM 1

(DOCX 833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, MR., Hu, CW. & Chen, JL. Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183, 1323–1332 (2016). https://doi.org/10.1007/s00604-015-1693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1693-3

Keywords

Navigation