Skip to main content
Log in

Extraction of endocrine disrupting phenols with iron-ferric oxide core-shell nanowires on graphene oxide nanosheets, followed by their determination by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a novel magnetic nanosorbent that consists of nanowires consisting of a core of metallic iron and an iron (III) oxide shell. These nanowires were then deposited on graphene oxide to form a composite of the type Fe@Fe2O3/GO. Specifically, the magnetic composite is formed via electrostatic interaction between negatively charged GO nanosheets and positively charged Fe@Fe2O3 nanowires in aqueous solution. The material was successfully applied to the extraction of the endocrine-disrupting phenols bisphenol A, triclosan and 2,4-dichlorophenol from water samples. Compared to neat graphene oxide, the composite material exhibits improved properties in terms of microextraction where both the hydrophilic graphene oxide and the Fe@Fe2O3 nanowires participate in the adsorption of the hydrophilic analytes. The amount of adsorbent, pH of water sample, extraction time and desorption time, type and volume of desorption solution were optimized. Following extraction for the absorbent, the phenols were quantified by HPLC. The three phenols can be determined in 0.5 to 100 ng∙mL−1 concentration range, with limits of detection (at an S/N ratio of 3) ranging from 0.08 to 0.10 ng∙mL−1. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations of lower than 7.5 % (n = 5). The recoveries from spiked real water samples were in the range from 84.8 to 92.0 %. The results indicate that the novel material can be successfully applied to the extraction and analysis of phenols from water samples.

Scheme 1 procedure for the synthesis of Fe@Fe203/G0

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma H, Mu F, Fan S, Zhou X, Jia Q (2012) Development of a cloud point extraction method for the determination of phenolic compounds in environmental water samples coupled with high-performance liquid chromatography. J Sep Sci 35(18):2484–2490. doi:10.1002/jssc.201200170

    Article  CAS  Google Scholar 

  2. Tarola AM, Van de Velde F, Salvagni L, Preti R (2012) Determination of phenolic compounds in strawberries (Fragaria ananassa Duch) by high performance liquid chromatography with diode array detection. Food Anal Methods 6(1):227–237. doi:10.1007/s12161-012-9431-5

    Article  Google Scholar 

  3. Godoy-Caballero MP, Acedo-Valenzuela MI, Duran-Meras I, Galeano-Diaz T (2012) Development of a non-aqueous capillary electrophoresis method with UV-visible and fluorescence detection for phenolics compounds in olive oil. Anal Bioanal Chem 403(1):279–290. doi:10.1007/s00216-012-5799-8

    Article  CAS  Google Scholar 

  4. Kawaguchia M, Ito R, Honda H, Endo N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2008) Stir bar sorptive extraction and thermal desorption-gas chromatography–mass spectrometry for trace analysis of triclosan in water sample. J Chromatogr A 1206(2):196–199. doi:10.1016/j.chroma.2008.08.060

    Article  Google Scholar 

  5. Liu Q, Shi J, Zeng L, Wang T, Cai Y, Jiang G (2011) Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes. J Chromatogr A 1218(2):197–204. doi:10.1016/j.chroma.2010.11.022

    Article  CAS  Google Scholar 

  6. Pirard C, Sagot C, Deville M, Dubois N, Charlier C (2012) Urinary levels of bisphenol A, triclosan and 4-nonylphenol in a general Belgian population. Environ Int 48(11):78–83. doi:10.1016/j.envint.2012.07.003

    Article  CAS  Google Scholar 

  7. Li QL, Wang XF, Yuan DX (2009) Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J Chromatogr A 1216(9):1305–1311. doi:10.1016/j.chroma.2008.12.082

    Article  CAS  Google Scholar 

  8. Canosa P, Rodriguez I, Rubí E, Cela R (2005) Optimization of solid-phase microextraction conditions for the determination of triclosan and possible related compounds in water samples. J Chromatogr A 1072(1):107–115. doi:10.1016/j.chroma.2004.11.032

    Article  CAS  Google Scholar 

  9. Peng JF, Liu JF, Hu XL, Jiang GB (2007) Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J Chromatogr A 1139(2):165–170. doi:10.1016/j.chroma.2006.11.006

    Article  CAS  Google Scholar 

  10. Wu YL, Hu B, Hou YL (2008) Headspace single drop and hollow fiber liquid phase microextractions for HPLC determination of phenols. J Sep Sci 31(21):3772–3781. doi:10.1002/jssc.200800365

    Article  CAS  Google Scholar 

  11. Kim D, Han J, Choi Y (2013) On-line solid-phase microextraction of triclosan, bisphenol A, chlorophenols, and selected pharmaceuticals in environmental water samples by high-performance liquid chromatography-ultraviolet detection. Anal Bioanal Chem 405(1):377–387. doi:10.1007/s00216-012-6490-9

    Article  CAS  Google Scholar 

  12. Tzeng Y-R, Pai WW, Tsao C-S, Yu M-S (2011) Adsorption of single platinum atom on the graphene oxide: the role of the carbon lattice. J Phys Chem C 115(24):12023–12032. doi:10.1021/jp200280t

    Article  CAS  Google Scholar 

  13. Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50(8):2772–2781. doi:10.1016/j.carbon.2012.02.038

    Article  CAS  Google Scholar 

  14. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742. doi:10.1002/adma.201000260

    Article  CAS  Google Scholar 

  15. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. doi:10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  16. Aguilar-Arteaga K, Rodriguez JA, Barrado E (2010) Magnetic solids in analytical chemistry: a review. Anal Chim Acta 674(2):157–165. doi:10.1016/j.aca.2010.06.043

    Article  CAS  Google Scholar 

  17. Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–111

    Article  CAS  Google Scholar 

  18. Lu L, Ai Z, Li J, Zheng Z, Li Q, Zhang L (2007) Synthesis and characterization of Fe − Fe2O3 core − shell nanowires and nanonecklaces. Cryst Growth Des 7(2):459–464. doi:10.1021/cg060633a

    Article  CAS  Google Scholar 

  19. Zhu LL, Ai ZH, Ho WK, Zhang LZ (2013) Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange. Sep Purif Technol 108(4):159–165. doi:10.1016/j.seppur.2013.02.016

    Article  CAS  Google Scholar 

  20. Noubactep C (2010) The suitability of metallic iron for environmental remediation. Environ Prog Sustain 29(3):286–291. doi:10.1002/ep.10406

    Article  CAS  Google Scholar 

  21. Jabeen H, Kemp KC, Chandra V (2013) Synthesis of nano zerovalent iron nanoparticles--graphene composite for the treatment of lead contaminated water. J Environ Manag 130(11):429–435. doi:10.1016/j.jenvman.2013.08.022

    Article  CAS  Google Scholar 

  22. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  23. Karatapanis AE, Petrakis DE, Stalikas CD (2012) A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L−1 concentration levels of heavy metals from water. Anal Chim Acta 726(5):22–27. doi:10.1016/j.aca.2012.03.018

    Article  CAS  Google Scholar 

  24. Guo S, Zhang G, Guo Y, Yu JC (2013) Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60(8):437–444. doi:10.1016/j.carbon.2013.04.058

    Article  CAS  Google Scholar 

  25. Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-Ray photoelectron spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530. doi:10.1039/ DT 9740001 525

    Article  Google Scholar 

  26. Liang RY, Huang NK, Zhang HL, Yang B, Wang DZ (1999) Binding energies of elements at the interface between oxygen-ion-irradiated ZrO2 -Y2O3 films and an iron substrate. Appl Surf Sci 150(1–4):39–42

    Google Scholar 

  27. CuShing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946. doi:10.1021/cr030027b

    Article  CAS  Google Scholar 

  28. Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X (2011) Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1218(20):2841–2847. doi:10.1016/j.chroma.2011.03.044

    Article  CAS  Google Scholar 

  29. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. doi:10.1021/ja803688x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (21073069, 21177048) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Cheng or Lizhi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Cai, C., Cheng, J. et al. Extraction of endocrine disrupting phenols with iron-ferric oxide core-shell nanowires on graphene oxide nanosheets, followed by their determination by HPLC. Microchim Acta 182, 2503–2511 (2015). https://doi.org/10.1007/s00604-015-1619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1619-0

Keywords

Navigation