Skip to main content
Log in

Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a nanocomposite prepared from polydopamine, silver nanoparticles, and polypyrrole (PDA-Ag-PPy) that can be used for the microextraction in packed syringe (MEPS) of tricyclic antidepressants from urine samples. The PDA-Ag-PPy composite was prepared in-situ by the reduction of silver ion - doped PPy during oxidative polymerization of dopamine. The PDA-Ag coatings on the nanoribbon – shaped PPy represent a highly porous, inorganic–organic hybrid nanomaterial that has a wide range of applications. The nanocomposite was characterized by FTIR and scanning electron microscopy. It is shown to be an efficient sorbent for the MEPS of the tricyclic antidepressants amitriptyline, imipramine and citalopram from urine samples. After extraction, the antidepressants were desorbed with acetonitrile and analyzed by GC-MS. Parameters influencing the extraction and desorption processes were optimized. The method has an analytical range that extends from 0.03 to 100 μg L−1. Limits of detection (S/N = 3) and limits of quantification (for S/N = 10) are in the range from 0.03 - 0.05 μg L−1 and 0.1 - 0.2 μg L−1, respectively. The relative standard deviations (for n = 4) are in the 5–9 % range. If applied to the analysis of spiked urine samples, the relative recoveries are between 88 and 104 %.

A nanocomposite was prepared from polydopamine, silver nanoparticles and polypyrrole that can be used for the microextraction in packed syringe of tricyclic antidepressants from urine samples. The polydopamine-Ag coatings on the nanoribbon – shaped polypyrrole represent a highly porous, inorganic-organic hybrid nanomaterial that has a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dalsin JL, Hu BH, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Article  CAS  Google Scholar 

  2. Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46

    Article  CAS  Google Scholar 

  3. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  4. Wei Q, Zhang F, Li J, Li B, Zhao C (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1:1430–1433

    Article  CAS  Google Scholar 

  5. Yang H, Lan Y, Zhu W, Li W, Xu D, Cui J, Shen D, Li G (2012) Polydopamine-coated nanofibrous mats as a versatile platform for producing porous functional embranes. J Mater Chem 22:16994–17001

    Article  CAS  Google Scholar 

  6. Son HY, Ryu JH, Lee H, Nam YS (2013) Silver-polydopamine hybrid coatings of electrospun poly(vinyl alcohol) nanofibers. Macromol Mater Eng 298:547–554

    Article  CAS  Google Scholar 

  7. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428–6435

    Article  CAS  Google Scholar 

  8. Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, Yin Y (2010) Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 stainless steel. J Mol Struct 982:152–161

    Article  CAS  Google Scholar 

  9. Niu H, Wang S, Zeng T, Wang Y, Zhang X, Meng Z, Cai Y (2012) Preparation and characterizationof layer-by-layer assembly of thiols/Ag nanoparticles/polydopamine on PET bottles for the enrichment of organic pollutants from water samples. J Mater Chem 22:15644–15653

    Article  CAS  Google Scholar 

  10. Kailasa SK, Wu HF (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629–1638

    Article  CAS  Google Scholar 

  11. Ouyang RZ, Lei JP, Ju HX, Xue YD (2007) A Molecularly imprinted copolymer designed for enantioselective recognition of glutamic Acid. Adv Funct Mater 17:3223–3230

    Article  CAS  Google Scholar 

  12. Ouyang R, Lei J, Ju H (2008) Surface molecularly imprinted nanowire for protein specific recognition. Chem Commun 5761–5763

  13. Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods. Anal Chim Acta 767:1–13

    Article  CAS  Google Scholar 

  14. Cao L, Chen HZ, Zhou HB, Zhu L, Sun JZ, Zhang XB, Xu JM, Wang M (2003) Carbon-nanotube-templated assembly of rare-earth phthalocyanine nanowires. Adv Mater 15:909–913

    Article  CAS  Google Scholar 

  15. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2011) Highly efficient catalytic micro- engines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc 133:11862–11864

    Article  CAS  Google Scholar 

  16. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 66:1961–1966

    Article  Google Scholar 

  17. Dong H, Prasad S, Nyame V, Jones WE (2004) Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates. Chem Mater 16:371–373

    Article  CAS  Google Scholar 

  18. Liu Z, Zhang X, Poyraz S, Surwade SP, Manohar SK (2010) Oxidative template for conducting polymer nanoclips. J Am Chem Soc 29:13158–13159

    Article  CAS  Google Scholar 

  19. Huang JX, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  20. Lemke TL, Williams DA (2007) Foye’s principles of medicinal chemistry, 6th edn. Williams and Wilkins, USA, pp 615–627

    Google Scholar 

  21. Kerr GW, McGuffie AC, Wilkie S (2001) Tricyclic antidepressant overdose. Emerg Med J 18:236–241

    Article  CAS  Google Scholar 

  22. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701:119–128

    Article  CAS  Google Scholar 

  23. Abdel-Rehim M, Skansen P, Vita M, Hassan Z, Blomberg L, Hassan M (2005) Micro- extraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry for quantification of olomoucine in human plasma samples. Anal Chim Acta 539:35–39

    Article  CAS  Google Scholar 

  24. Rani S, Kumar A, Malik AK, Singh B (2011) Quantification of tricyclic and nontricyclic antidepressants in spiked plasma and urine samples using microextraction in packed syringe and analysis by LC and GC-MS. Chromatographia 74:235–242

    Article  CAS  Google Scholar 

  25. United States Pharmacopeia and National Formulary USP29-NF24 (2006) 1113

  26. Zhang X, Zhang J, Liu Zh, Robinson C (2004), Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem Commun 1852–1853

  27. Wu J, Lee H, You J, Kau Y, Liu S (2014) Adsorption of silver ions on polypyrrole embedded electrospun nanofibrous polyether sulfone membranes. J Colloid Interface Sci 420:145–151

    Article  CAS  Google Scholar 

  28. Omastova M, Bober P, Moravkova Z, Perinka N, Kaplanova M, Syrovy T, Hromadkova J, Trchova M, Stejskal J (2014) Towards conducting inks: polypyrrole–silver colloids. Electro Chim Acta 122:296–302

    Article  CAS  Google Scholar 

  29. Bagheri H, Babanezhad E, Khalilian F (2009) An interior needle electro polymerized pyrrole-base d coating for headspace solid-phase dynamic extraction. Anal Chim Acta 634:209–214

    Article  CAS  Google Scholar 

  30. Bagheri H, Mohammadi A (2003) Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J Chromatogr A 1015:23–30

    Article  CAS  Google Scholar 

  31. Yu B, Wang DA, Ye Q, Zhou F, Liu W (2009) Robust polydopamine nano/microcapsules and their loading and release behavior. Chem Commun 6789–6791

  32. Liu A, Zhao L, Bai H, Zhao H, Xing X, Shi G (2009) Polypyrrole actuator with a bioadhesive surface for accumulating bacteria from physiological media. Appl Mater Interfaces 1:951–955

    Article  CAS  Google Scholar 

  33. Yang X, Li L (2010) Polypyrrole nanofibers synthesized via reactive template approach and their NH3 gas sensitivity. Synth Met 160:1365–1367

    Article  CAS  Google Scholar 

  34. Vivekchand SRC, Kam KC, Gundiah G, Govindaraj A, Cheetham AK, Rao CNR (2005) Electrical properties of inorganic nanowire–polymer composites. J Mater Chem 15:4922–4927

    Article  CAS  Google Scholar 

  35. Xing S, Zhao G (2007) One-step synthesis of polypyrrole– Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Mater Lett 61:2040–2044

    Article  CAS  Google Scholar 

  36. Liu Y, Ai K, Lu L (2014) Polydopamine and Its derivative materials: synthesis and promising applications in energy, environmental and biomedical fields. Chem Rev 114:5057–5115

    Article  CAS  Google Scholar 

  37. Hennion MC, Pichon V (1994) Soli d-phase extraction of polar organic pollutants from water. Environ Sci Technol 28:576–583

    Article  Google Scholar 

  38. Xu R, Lee HK (2014) Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for thedetermination of tricyclic antidepressants in environmental water samples. J Chromatogr A 1350:15–22

    Article  CAS  Google Scholar 

  39. Ito R, Ushiro M, Takahashi Y, Saito K, Te O, Iwasaki Y, Nakazawa H (2011) Improvement and validation the method using dispersive liquid–liquid microextraction with in situ derivatization followed by gas chromatography–mass spectrometry for determination of tricyclic antidepressants in human urine samples. J Chromatogr B 879:3714–3720

    Article  CAS  Google Scholar 

  40. Papoutsis S, Khraiwesh A, Nikolaou P, Pistos C, Spiliopoulou C, Athanaselis S (2012) A fully validated method for the simultaneous determination of 11antidepressant drugs in whole blood by gas chromatography–mass spectrometry. J Pharm Biomed Anal 70:557–562

    Article  CAS  Google Scholar 

  41. Moffat AC, Osselton MD, Widdop B, Galichet LY (2011) Clarke’s analysis of drugs and poisons, 4rd edn. Pharmaceutical Press

Download references

Acknowledgments

The Research Council and Graduates School of Sharif University of Technology (SUT) are thanked for supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Banihashemi, S. & Zandian, F.K. Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183, 195–202 (2016). https://doi.org/10.1007/s00604-015-1606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1606-5

Keywords

Navigation