Skip to main content
Log in

A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A pH responsive nanogel composed of magnetite (Fe3O4), silica and poly(4-vinylpyridine) was designed and utilized as an adsorbent for the simultaneous separation of ultra-trace amounts of cadmium, lead, copper and nickel ions. This solid phase extraction system was characterized by Fourier transform infrared spectrometry, transmission electron microscopy and X-ray diffraction analysis. The sorbent can be separated from the sample solution by applying an external magnetic field, and the analytes eluted with 1 M hydrochloric acid. The extracted ions were quantified by flame atomic absorption spectrophotometry. Effects of pH value, adsorption and desorption time, type, concentration and volume of the eluent, breakthrough volume, and effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >98 %, the limits of detection are 0.03, 0.2, 0.6 and 0.9 ng mL−1 for Cd(II), Cu(II), Ni(II) and Pb(II), respectively, and the adsorption capacities for these ions are 52, 61, 75 and 65 mg g−1. The sorbent has a high affinity for the above target ions. Eventually, the pH responsive system was used for rapid, efficient, fairly selective and highly sensitive extraction of these ions from various water samples.

We describe a magnetite-silica-poly(4-vinylpyridine) nanogel that is pH-responsive and can act as a sorbent for the extraction of Cd(II), Cu(II), Ni(II) and Pb(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behbahani M, Najafi M, Amini MM, Sadeghi O, Bagheri A, Salarian M (2013) Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchim Acta 180:911

    Article  CAS  Google Scholar 

  2. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169

    Article  CAS  Google Scholar 

  3. Ghambarian M, Yamini Y, Esrafili A (2013) Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchim Acta 180:519

    Article  CAS  Google Scholar 

  4. Salarian M, Ghanbarpour A, Behbahani M, Bagheri S, Bagheri A (2014) A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra traces of lead (II) ions. Microchim Acta 181:999

    Article  CAS  Google Scholar 

  5. Cui Y, Liu S, Wei K, Liu Y, Hu Z (2015) Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents. Microchim Acta. doi:10.1007/s00604-015-1452-5

    Google Scholar 

  6. Behbahani M, Ghareh Hassanlou P, Amini MM, Omidi F, Esrafili A, Farzadkia M, Bagheri A (2015) Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples. Food Chem 187:82

    Article  CAS  Google Scholar 

  7. Ghaedi M, Ansari A, Habibi MH, Asghari AR (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem 20:17–28

    Article  CAS  Google Scholar 

  8. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A (2014) Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason Sonochem 21:242–252

    Article  CAS  Google Scholar 

  9. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A (2015) Optimization of combined ultrasonic assisted/tin sulfide nanoparticle loaded on activated carbon removal of erythrosine by response surface methodology. J Ind Eng Chem 21:459–469

    Article  CAS  Google Scholar 

  10. Ghaedi M, Shojaeipour E, Ghaedi AM, Sahraei R (2015) Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization. Spectrochim Acta A 142:135–149

    Article  CAS  Google Scholar 

  11. Roosta M, Ghaedi M, Shokri N, Daneshfar A, Sahraei R, Asghari A (2014) Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochim Acta A 118:55–65

    Article  CAS  Google Scholar 

  12. Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Bazrafshan AA (2015) Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology. Spectrochim Acta A 145:203–212

    Article  CAS  Google Scholar 

  13. Irigoyen L, Moreno C, Mendiguchía C, Vargas MG (2006) Application of liquid membranes to sample preconcentration for the spectrometric determination of cadmium in seawater. J Membr Sci 274:169

    Article  CAS  Google Scholar 

  14. Bagheri A, Behbahani M, Amini MM, Sadeghi O, Tootoonchi A, Dahaghin Z (2012) Preconcentration and separation of ultra-trace palladium ion using pyridine-functionalized magnetic nanoparticles. Microchim Acta 178:261

    Article  CAS  Google Scholar 

  15. Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Moazami HR, Bagheri A (2014) Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci 37:1610

    Article  CAS  Google Scholar 

  16. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466–471

    Article  CAS  Google Scholar 

  17. Tuzen M, Ozlem Saygi K, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570

    Article  CAS  Google Scholar 

  18. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  19. Behbahani M, Sadeghi Abandansari H, Salarian M, Babapour M, Bagheri A, Nabid MR (2014) Synthesis and application of a thermosensitive tri-block copolymer as an efficient sample treatment technique for preconcentration and ultra-trace detection of lead ions. Microchim Acta 181:129

    Article  CAS  Google Scholar 

  20. Yildiz U, Ferkan Kemika Ö, Hazerb B (2010) The removal of heavy metal ions from aqueous solutions by novel pH-sensitive hydrogels. J Hazard Mater 183:521

    Article  CAS  Google Scholar 

  21. Sahu SK, Chakrabarty A, Bhattacharya D, Ghosh SK, Pramanik P (2011) Single step surface modification of highly stable magnetic nanoparticles for purification of his-tag proteins. J Nanoparticle Res 13(6):2475

    Article  CAS  Google Scholar 

  22. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed 44:1068

    Article  Google Scholar 

  23. Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T (1990) Quantum size effects on photoluminescence in ultrafine Si particles. Appl Phys Lett 56:2379

    Article  CAS  Google Scholar 

  24. Ribera A, Arends IWCE, de Vries S, Pérez-Ramírez J, Sheldon RA (2000) Preparation, characterization and performance of FeZSM-5 for the selective oxidation of benzene to phenol with N2O. J Catal 195:287

    Article  CAS  Google Scholar 

  25. Durduran E, Altundag H, Imamoglu M, Zeki Yıldız S, Tuzen M (2015) Simultaneous ICP-OES determination of trace metals in water and food samples after their preconcentration on silica gel functionalized with N-(2-aminoethyl)-2,3-dihydroxybenzaldimine. J Ind Eng Chem. doi:10.1016/j.jiec.2014.12.041

    Google Scholar 

  26. Jalbani N, Soylak M (2015) Ligandless ultrasonic-assisted and ionic liquid-based dispersive liquid–liquid microextraction of copper, nickel and lead in different food samples. Food Chem 167:433

    Article  CAS  Google Scholar 

  27. Khajeh M (2010) Application of factorial design and box–behnken matrix in the optimization of a magnetic nanoparticles procedure for copper determination in water and biological samples. Biol Trace Elem Res 135:355

    Article  CAS  Google Scholar 

  28. Narin I, Surme Y, Bercin E, Soylak M (2007) SP70-α-benzoin oxime chelating resin for preconcentration–separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples. J Hazard Mater 145:113

    Article  CAS  Google Scholar 

  29. Ngeontae W, Aeungmaitrepirom W, Tuntulani T (2007) Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). Talanta 71:1075

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Behbahani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behbahani, M., Bide, Y., Bagheri, S. et al. A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Microchim Acta 183, 111–121 (2016). https://doi.org/10.1007/s00604-015-1603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1603-8

Keywords

Navigation