Skip to main content

Advertisement

Log in

Determination of trypsin activity using a gold electrode modified with a nanocover composed of graphene oxide and thionine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an electrochemical method for the determination of the activity of trypsin. A multi-functional substrate peptide (HHHAKSSATGGC-HS) is designed and immobilized on a gold electrode. The three His residues in the N-terminal are able to recruit thionine-loaded graphene oxide (GO/thionine), a nanocover adopted for signal amplification. Once the peptide is cleaved under enzymatic catalysis by trypsin (cleavage site: Lys residue), the His residues leave the electrode, and the GO/thionine cannot cover the peptide-modified electrode anymore. Thus, the changes of the electrochemical signal of thionine, typically acquired at a voltage of -0.35 V, can be used to determine the activity of trypsin. A detection range of 1 × 10−4 to 1 U, with a detection limit of 3.3 × 10−5 U, can be achieved, which is better than some currently available methods. In addition, the method is highly specific, facile, and has the potential for the detection of trypsin-like proteases.

Graphene oxide was adopted as a nanocover for the development of a sensitive electrochemical method to detect the activity of trypsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin YY, Chapman R, Stevens MM (2014) Label-free multimodal protease detection based on protein/perylene dye coassembly and enzyme-triggered disassembly. Anal Chem 86:6410

    Article  CAS  Google Scholar 

  2. Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608

    Article  CAS  Google Scholar 

  3. Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41:832

    Article  CAS  Google Scholar 

  4. Gao X, Tang GC, Li Y, Su XG (2012) A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Anal Chim Acta 743:131

    Article  CAS  Google Scholar 

  5. Baustert JH, Wolfbeis OS, Moser R, Koller E (1988) Fluorometric continuous kinetics assay of α-chymotrypsin using protease substrates possessing long-wave excitation and emission maxima. Anal Biochem 171:393

    Article  CAS  Google Scholar 

  6. Guarise C, Pasquato L, De Filippis V, Scrimin P (2006) Gold nanoparticles-based protease assay. Proc Natl Acad Sci U S A 103:3978

    Article  CAS  Google Scholar 

  7. Wang YY, Zhang Y, Liu B (2010) Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal Chem 82:8604

    Article  CAS  Google Scholar 

  8. Zhu Q, Zhan RY, Liu B (2010) Homogeneous detection of trypsin in protein mixtures based on fluorescence resonance energy transfer between anionic conjugated polymer and fluorescent probe. Macromol Rapid Commun 31:1060

    Article  CAS  Google Scholar 

  9. Xu JP, Fang Y, Song ZG, Mei J, Jia L, Qin AJ, Sun JZ, Ji J, Tang BZ (2011) BSA-tetraphenylethene derivative conjugates with aggregation-induced emission properties: fluorescent probes for label-free and homogeneous detection of protease and alpha 1-antitrypsin. Analyst 136:2315

    Article  CAS  Google Scholar 

  10. Hu LZ, Han S, Parveen S, Yuan YL, Zhang L, Xu GB (2012) Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron 32:297

    Article  CAS  Google Scholar 

  11. Zaccheo BA, Crooks RM (2011) Self-powered sensor for naked-eye detection of serum trypsin. Anal Chem 83:1185

    Article  CAS  Google Scholar 

  12. Dong MM, Qi HL, Ding SG, Li M (2015) Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode. Microchim Acta 182:43

    Article  CAS  Google Scholar 

  13. Morales-Narvaez E, Merkoci A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298

    Article  CAS  Google Scholar 

  14. Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59

    Article  CAS  Google Scholar 

  15. Geim AK (2009) Graphene: status and prospects. Science 324:1530

    Article  CAS  Google Scholar 

  16. Feng LY, Wu L, Qu XG (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168

    Article  CAS  Google Scholar 

  17. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211

    Article  CAS  Google Scholar 

  18. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785

    Article  CAS  Google Scholar 

  19. He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, Wang LH, Song SP, Fang HP, Fan CH (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453

    Article  CAS  Google Scholar 

  20. Liu M, Song JP, Shuang SM, Dong C, Brennan JD, Li YF (2014) A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8:5564.34

    Google Scholar 

  21. Zhang Z, Luo LQ, Zhu LM, Ding YP, Deng DM, Wang ZX (2013) Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Analyst 138:5365

    Article  CAS  Google Scholar 

  22. Wang Y, Li ZH, Hu DH, Lin CT, Li JH, Lin YH (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274

    Article  CAS  Google Scholar 

  23. Wei Q, Mao KX, Wu D, Dai YX, Yang JA, Du B, Yang MH, Li H (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sensors Actuators B Chem 149:314

    Article  CAS  Google Scholar 

  24. Zhu LM, Luo LQ (2012) DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron 35:507

    Article  CAS  Google Scholar 

  25. Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346

    Article  CAS  Google Scholar 

  26. Liu SF, Liu T, Wang L (2015) Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase using a cascade enzymatic cleavage strategy. Chem Commun 51:176

    Article  CAS  Google Scholar 

  27. Gerasimov JY, Lai RY (2010) An electrochemical peptide-based biosensing platform for HIV detection. Chem Commun 46:395

    Article  CAS  Google Scholar 

  28. Zhang M, Yin BC, Wang XF, Ye BC (2011) Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 47:2399

    Article  CAS  Google Scholar 

  29. Rajesh C, Majumder C, Mizuseki H, Kawazoe Y (2009) A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 130:124911

    Article  Google Scholar 

  30. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60

    Article  CAS  Google Scholar 

  31. Luo ZT, Lu Y, Somers LA, Johnson ATC (2009) High yield preparation of macroscopic graphene oxide membranes. J Am Chem Soc 131:898

    Article  CAS  Google Scholar 

  32. Arya SK, Pandey P, Singh SP, Datta M, Malhotra BD (2007) Dithiobissuccinimidyl propionate self assembled monolayer based cholesterol biosensor. Analyst 132:1005

    Article  CAS  Google Scholar 

  33. Miao P, Liu L, Nie YJ, Li GX (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24:3347

    Article  CAS  Google Scholar 

  34. Liang RP, Tian XC, Qiu P, Qiu JD (2014) Multiplexed electrochemical detection of trypsin and chymotrypsin based on distinguishable signal nanoprobes. Anal Chem 86:9256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 31200742).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhou Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Shi, H., Ban, F. et al. Determination of trypsin activity using a gold electrode modified with a nanocover composed of graphene oxide and thionine. Microchim Acta 182, 2469–2476 (2015). https://doi.org/10.1007/s00604-015-1601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1601-x

Keywords

Navigation