Skip to main content
Log in

Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a new type of NADH sensor based on a screen-printed electrode (SPE) modified with reduced graphene oxide (RGO) and poly(allylamine hydrochloride) (PAH). A mixture of graphene oxide (GO) and PAH was deposited on the surface of a carbon working electrode, and RGO was prepared in-situ by electrochemical reduction of GO. The oxidation peak of NADH was recorded at +450 mV (vs. silver pseudo-reference). Under optimized conditions, the electrode exhibits high electrocatalytic activity toward NADH oxidation, expressed by a high rate constant and a stable response up to 0.8 mM concentrations. The sensitivity is 108.6 μA·mM−1·cm−2, the response time is 20 s (for 95 % of the steady state current), and the detection limit is 6.6 μM (at an S/N ratio of 3). A peak separation of about 300 mV was achieved in differential pulse voltammetric determination of NADH in the presence of ascorbic acid. This makes the new sensor a useful tool with potential analytical application in different dehydrogenase based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cenas N, Rozgait J, Pocius A, Kulys J (1983) Electrocatalytic oxidation of NADH and ascorbic acid on electrochemically pretreated glassy carbon electrodes. J Electroanal Chem Interfacial Electrochem 154(1–2):121–128. doi:10.1016/S0022-0728(83)80535-X

    Article  CAS  Google Scholar 

  2. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pka measurements. J Phys Chem Lett 3:867–872. doi:10.1021/jz300236w

    Article  CAS  Google Scholar 

  3. Gorton L, Dominguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82(4):371–392. doi:10.1016/S1389-0352(01)00053-8

    Article  CAS  Google Scholar 

  4. Gurban A-M, Noguer T, Bala C, Rotariu L (2008) Improvement of NADH detection using Prussian blue modified screen-printed electrodes and different strategies of immobilisation. Sensors Actuators B Chem 128(2):536–544. doi:10.1016/j.snb.2007.07.067

    Article  CAS  Google Scholar 

  5. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181(9–10):865–891. doi:10.1007/s00604-014-1181-1

    Article  CAS  Google Scholar 

  6. Kumar S, Chen S-M (2008) Electroanalysis of nadh using conducting and redox active polymer/carbon nanotubes modified electrodes-a review. Sensors 8(2):739–766. doi:10.3390/s8020739

    Article  CAS  Google Scholar 

  7. Ge B, Tan Y, Xie Q, Ma M, Yao S (2009) Preparation of chitosan-dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sensors Actuators B Chem 137(2):547–554. doi:10.1016/j.snb.2009.01.030

    Article  CAS  Google Scholar 

  8. Filip J, Jana Š, Peter T, Peter G, Jan T (2011) A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta 84(2):355–361. doi:10.1016/j.talanta.2011.01.004

    Article  CAS  Google Scholar 

  9. Timm RA, Kisner A, Bassetto VC, Kubota LT (2014) Critical view on graphene oxide production and its transfer to surfaces aiming electrochemical applications. J Nanosci Nanotechnol 14(9):6478–6496. doi:10.1166/jnn.2014.9371

    Article  CAS  Google Scholar 

  10. Fang Y, Wang E (2013) Electrochemical biosensors on platforms of graphene. Chem Commun 49(83):9526–9539. doi:10.1039/C3CC44735A

    Article  CAS  Google Scholar 

  11. Gasnier Al, Laura Pedano M, Rubianes MD, Rivas GA (2013) Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. Sensors Actuators B Chem 176 (0):921–926. doi:10.1016/j.snb.2012.09.092

  12. Wang X, Li L, Wang Y, Xu C, Zhao B, Yang X (2013) Application of reduced graphene oxide and carbon nanotube modified electrodes for measuring the enzymatic activity of alcohol dehydrogenase. Food Chem 138(4):2195–2200. doi:10.1016/j.foodchem.2012.11.137

    Article  CAS  Google Scholar 

  13. Huang T-Y, Huang J-H, Wei H-Y, Ho K-C, Chu C-W (2013) rGO/SWCNT composites as novel electrode materials for electrochemical biosensing. Biosens Bioelectron 43:173–179. doi:10.1016/j.bios.2012.10.047

    Article  CAS  Google Scholar 

  14. Amouzadeh Tabrizi M, Jalilzadeh Azar S, Nadali Varkani J (2014) Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing. Anal Biochem 460:29–35. doi:10.1016/j.ab.2014.05.002

    Article  CAS  Google Scholar 

  15. Govindhan M, Amiri M, Chen A (2015) Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens Bioelectron 66:474–480. doi:10.1016/j.bios.2014.12.012

    Article  CAS  Google Scholar 

  16. Lindfors T, Österholm A, Kauppila J, Pesonen M (2013) Electrochemical reduction of graphene oxide in electrically conducting poly(3,4-ethylenedioxythiophene) composite films. Electrochim Acta 110:428–436. doi:10.1016/j.electacta.2013.03.070

    Article  CAS  Google Scholar 

  17. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chem Eng J 251:422–434. doi:10.1016/j.cej.2014.04.004

    Article  CAS  Google Scholar 

  18. Wang X, Zhang X (2013) Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochim Acta 112:774–782. doi:10.1016/j.electacta.2013.09.036

    Article  CAS  Google Scholar 

  19. Guo H-L, Wang X-F, Qian Q-Y, Wang F-B, Xia X-H (2009) A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 3(9):2653–2659. doi:10.1021/nn900227d

    Article  CAS  Google Scholar 

  20. Nicholson RS, Shain I (1964) Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal Chem 36(4):706–723. doi:10.1021/ac60210a007

    Article  CAS  Google Scholar 

  21. Li L, Lu H, Deng L (2013) A sensitive NADH and ethanol biosensor based on graphene Au nanorods nanocomposites. Talanta 113:1–6. doi:10.1016/j.talanta.2013.03.074

    Article  CAS  Google Scholar 

  22. Pandey PC, Upadhyay S, Tiwari I, Tripathi VS (2001) An ormosil-based peroxide biosensor-a comparative study on direct electron transport from horseradish peroxidase. Sensors Actuators B Chem 72 (3):224–232. doi:10.1016/S0925-4005(00)00669-9

  23. Loos MR, Schulte K, Loos M (2015) Chapter 8 - is it worth the effort to reinforce polymers with carbon nanotubes? In: Carbon nanotube reinforced composites. William Andrew Publishing, Oxford, pp. 207–232. doi:10.1016/B978-1-4557-3195-4.00008-4

    Google Scholar 

  24. Yang J, Yu J-H, Rudi Strickler J, Chang W-J, Gunasekaran S (2013) Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530–538. doi:10.1016/j.bios.2013.03.051

    Article  CAS  Google Scholar 

  25. Basirun W, Sookhakian M, Baradaran S, Mahmoudian M, Ebadi M (2013) Solid-phase electrochemical reduction of graphene oxide films in alkaline solution. Nanoscale Res Lett 8(1):397. doi:10.1186/1556-276X-8-397

    Article  Google Scholar 

  26. Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochemical reduction of graphene oxide in organic solvents. Electrochim Acta 56(15):5363–5368. doi:10.1016/j.electacta.2011.03.117

    Article  CAS  Google Scholar 

  27. Kauppila J, Kunnas P, Damlin P, Viinikanoja A, Kvarnström C (2013) Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim Acta 89:84–89. doi:10.1016/j.electacta.2012.10.153

    Article  CAS  Google Scholar 

  28. Ramachandran R, Felix S, Joshi GM, Raghupathy BPC, Jeong SK, Grace AN (2013) Synthesis of graphene platelets by chemical and electrochemical route. Mater Res Bull 48(10):3834–3842. doi:10.1016/j.materresbull.2013.05.085

    Article  CAS  Google Scholar 

  29. Choi J, Rubner MF (2004) Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38(1):116–124. doi:10.1021/ma048596o

    Article  Google Scholar 

  30. Lates V, Gligor D, Muresan LM, Popescu IC (2011) Comparative investigation of NADH electrooxidation at graphite electrodes modified with two new phenothiazine derivatives. J Electroanal Chem 661(1):192–197. doi:10.1016/j.jelechem.2011.07.046

    Article  CAS  Google Scholar 

  31. Rotariu L, Istrate O-M, Bala C (2013) Poly(allylamine hydrochloride) modified screen-printed carbon electrode for sensitive and selective detection of NADH. Sensors Actuators B Chem 191:491–497. doi:10.1016/j.snb.2013.09.077

    Article  Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications 2nd edn. Wiley, 850

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of: Romanian National Authority for Scientific Research grant project PN-II-ID-PCE-2011-3-0286; EC for project no. PIRSES_GA_2012-318053. O.-M. Istrate doctoral fellowship was supported by the strategic grant POSDRU/159/1.5/S/137750, ”Project Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research” cofinanced by the European Social Found within the Sectorial Operational Program Human Resources Development 2007 – 2013. SEM images were accomplished with the help of Dr. Virgil Marinescu from the National Institute for R&D in Electrical Engineering, Bucharest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Bala.

Electronic supplementary material

ESM 1

(PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istrate, OM., Rotariu, L. & Bala, C. Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchim Acta 183, 57–65 (2016). https://doi.org/10.1007/s00604-015-1595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1595-4

Keywords

Navigation