Skip to main content
Log in

A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a single-step solvothermal method for the preparation of nanocomposites consisting of graphene oxide and Fe3O4 nanoparticles (GO/Fe3O4). This material is shown to be useful as a magnetic sorbent for the extraction of flavonoids from green tea, red wine, and urine samples. The nanocomposite is taking advantage of the high surface area of GO and the magnetic phase separation feature of the magnetic sorbent. The nanocomposite is recyclable and was applied to the extraction of flavonoids prior to their determination by HPLC. The effects of amount of surfactant, pH value of the sample solution, extraction time, and desorption condition on the extraction efficiency, and the regeneration conditions were optimized. The limits of detection for luteolin, quercetin and kaempferol range from 0.2 to 0.5 ng∙ mL−1 in urine, from 3.0 to 6.0 ng∙mL−1 in green tea, and from 1.0 to 2.5 ng∙mL−1 in red wine. The recoveries are between 82.0 and 101.4 %, with relative standard deviations of <9.3 %.

The article describes a method for magnetic solid-phase extraction (MSPE) of trace amounts of natural substances in complex samples by using graphene oxide (GO)-Fe3O4nanoparticles as the sorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishii K, Furuta T, Kasuya Y (2003) High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 794(1):49–56. doi:10.1016/s1570-0232(03)00398-2

    Article  CAS  Google Scholar 

  2. Han D, Row KH (2011) Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. J Sci Food Agric 91(15):2888–2892. doi:10.1002/jsfa.4553

    Article  CAS  Google Scholar 

  3. de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Brinkman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112(1–2):31–63. doi:10.1016/j.chroma.2006.01.019

    Article  Google Scholar 

  4. Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11(4):1365–1402. doi:10.3390/ijms11041365

    Article  CAS  Google Scholar 

  5. Castro-Lopez Mdel M, Lopez-Vilarino JM, Gonzalez-Rodriguez MV (2014) Analytical determination of flavonoids aimed to analysis of natural samples and active packaging applications. Food Chem 150:119–127. doi:10.1016/j.foodchem.2013.10.156

    Article  Google Scholar 

  6. Qiu F, Li Z, He L, Wang D (2013) HPLC-ESI-MS/MS analysis and pharmacokinetics of luteoloside, a potential anticarcinogenic component isolated from Lonicera japonica, in beagle dogs. Biomed Chromatogr BMC 27(3):311–317. doi:10.1002/bmc.2793

    CAS  Google Scholar 

  7. Stecher G, Huck CW, Popp M, Bonn GK (2001) Determination of flavonoids and stilbenes in red wine and related biological products by HPLC and HPLC–ESI–MS–MS. Fresenius J Anal Chem 371(1):73–80. doi:10.1007/s002160100898

    Article  CAS  Google Scholar 

  8. Hadjmohammadi M, Karimiyan H, Sharifi V (2013) Hollow fibre-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of flavonoids in Echinophora platyloba DC and Mentha piperita. Food Chem 141(2):731–735. doi:10.1016/j.foodchem.2013.02.083

    Article  CAS  Google Scholar 

  9. de Vries JHM, Hollman PC, Meyboom S, Buysman MNCP, Zock PL, van Staveren WA, Katan MB (1998) Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr 68:60–65

    Google Scholar 

  10. Young JF, Nielsen SE, Haraldsdóttir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozier A, Sandström B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94

    CAS  Google Scholar 

  11. Jones DJL, Lim CK, Ferry DR, Gescher A (1998) Determination of quercetin in human plasma by HPLC with spectrophotometric or electrochemical detection. Biomed Chromatogr 12:232–235

    Article  CAS  Google Scholar 

  12. Luo J, Zhang J, Lin J, Wang J, Yang P (2014) Enrichment and sensitive detection of polyphenolic compounds via β-cyclodextrin functionalized fluorescent gold nanorods. Microchim Acta 182(1–2):201–208. doi:10.1007/s00604-014-1312-8

    Google Scholar 

  13. Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatogr A 1218(44):7936–7942. doi:10.1016/j.chroma.2011.09.027

    Article  CAS  Google Scholar 

  14. Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal Chem 59:50–58. doi:10.1016/j.trac.2014.04.007

    Article  CAS  Google Scholar 

  15. Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal Chem 51:33–43. doi:10.1016/j.trac.2013.05.011

    Article  CAS  Google Scholar 

  16. Meng J, Bu J, Deng C, Zhang X (2011) Preparation of polypyrrole-coated magnetic particles for micro solid-phase extraction of phthalates in water by gas chromatography–mass spectrometry analysis. J Chromatogr A 1218(12):1585–1591. doi:10.1016/j.chroma.2011.01.057

    Article  CAS  Google Scholar 

  17. van Eijkeren JC, Heringa MB, Hermens JL (2004) Modelling SPME data from kinetic measurements in complex samples. Analyst 129(11):1137–1142. doi:10.1039/b407926d

    Article  Google Scholar 

  18. Agnes G, Oomen PM, Tolls J (2000) Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophobic organic compounds: matrix effects and limitations. Anal Chem 72:2802–2808

    Article  Google Scholar 

  19. Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395. doi:10.1016/j.talanta.2012.09.046

    Article  CAS  Google Scholar 

  20. Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY (2014) Magnetic solid phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J Chromatogr A 1347:30–38. doi:10.1016/j.chroma.2014.04.073

    Article  CAS  Google Scholar 

  21. Yang J, Si L, Cui S, Bi W (2014) Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids. Microchim Acta 182(3–4):737–744. doi:10.1007/s00604-014-1381-8

    Google Scholar 

  22. Hu XZ, Chen ML, Gao Q, Yu QW, Feng YQ (2012) Determination of benzimidazole residues in animal tissue samples by combination of magnetic solid-phase extraction with capillary zone electrophoresis. Talanta 89:335–341. doi:10.1016/j.talanta.2011.12.038

    Article  CAS  Google Scholar 

  23. Heidari H, Razmi H (2012) Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta 99:13–21. doi:10.1016/j.talanta.2012.04.023

    Article  CAS  Google Scholar 

  24. Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X (2011) Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1218(20):2841–2847. doi:10.1016/j.chroma.2011.03.044

    Article  CAS  Google Scholar 

  25. He Z, Liu D, Li R, Zhou Z, Wang P (2012) Magnetic solid-phase extraction of sulfonylurea herbicides in environmental water samples by Fe3O4@dioctadecyl dimethyl ammonium chloride@silica magnetic particles. Anal Chim Acta 747:29–35. doi:10.1016/j.aca.2012.08.015

    Article  CAS  Google Scholar 

  26. Liu L, Feng T, Wang C, Wu Q, Wang Z (2014) Magnetic three-dimensional graphene nanoparticles for the preconcentration of endocrine-disrupting phenols. Microchim Acta 181(11–12):1249–1255. doi:10.1007/s00604-014-1234-5

    Article  CAS  Google Scholar 

  27. Alvand M, Shemirani F (2013) Preconcentration of trace cadmium ion using magnetic graphene nanoparticles as an efficient adsorbent. Microchim Acta 181(1–2):181–188. doi:10.1007/s00604-013-1094-4

    Google Scholar 

  28. Bai L-Z, Zhao D-L, Xu Y, Zhang J-M, Gao Y-L, Zhao L-Y, Tang J-T (2012) Inductive heating property of graphene oxide–Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater Lett 68:399–401. doi:10.1016/j.matlet.2011.11.013

    Article  CAS  Google Scholar 

  29. Wang W, Ma R, Wu Q, Wang C, Wang Z (2013) Fabrication of magnetic microsphere-confined graphene for the preconcentration of some phthalate esters from environmental water and soybean milk samples followed by their determination by HPLC. Talanta 109:133–140. doi:10.1016/j.talanta.2013.02.008

    Article  CAS  Google Scholar 

  30. Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448. doi:10.1039/c0jm02494e

    Article  CAS  Google Scholar 

  31. Lu D, Zhang Y, Lin S, Wang L, Wang C (2013) Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J Alloys Compd 579:336–342. doi:10.1016/j.jallcom.2013.06.098

    Article  CAS  Google Scholar 

  32. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G (2011) Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed Engl 50(26):5913–5917. doi:10.1002/anie.201007138

    Article  CAS  Google Scholar 

  33. Liu Q, Shi J, Jiang G (2012) Application of graphene in analytical sample preparation. TrAC Trends Anal Chem 37:1–11. doi:10.1016/j.trac.2012.03.011

    Article  Google Scholar 

  34. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293. doi:10.1039/b902394a

    Article  CAS  Google Scholar 

  35. Bi W, Tian M, Row KH (2013) Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A 1285:22–30. doi:10.1016/j.chroma.2013.02.041

    Article  CAS  Google Scholar 

  36. Xiao D, Yuan D, He H, Pham-Huy C, Dai H, Wang C, Zhang C (2014) Mixed hemimicelle solid-phase extraction based on magnetic carbon nanotubes and ionic liquids for the determination of flavonoids. Carbon 72:274–286. doi:10.1016/j.carbon.2014.01.075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81402899), the Open Project of Key Laboratory of Modern Toxicology of the Ministry of Education (Grant No. NMUMT201404), National Basic Science Personal Training Fund (No. J0630858) and the Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Additional information

Jianrong Wu and Deli Xiao are co-first authors.

Jianrong Wu and Deli Xiao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xiao, D., Zhao, H. et al. A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples. Microchim Acta 182, 2299–2306 (2015). https://doi.org/10.1007/s00604-015-1575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1575-8

Keywords

Navigation