Skip to main content
Log in

Ultrasensitive determination of mercury(II) using a chemiluminescence system composed of permanganate, rhodamine B and gold nanoprisms

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a highly sensitive and fairly simple chemiluminescence (CL) assay for mercury(II) ions. The CL system consists of an alkaline solution of rhodamine B (RhoB) and KMnO4 whose weak emission undergoes a large enhancement in presence of gold nanoparticles and, in particular, of anisotropic gold nanoprisms (Au-NPr). CL intensity is, however, decreased in the presence of Hg(II) by suppressing the interaction between RhoB and Au-NPr. Based on this finding, a method was developed for the determination of Hg(II). Under optimum conditions, Hg(II) can be quantified in the 67 pM to 33.3 nM concentration range, and the detection limit (at 3 σ) is 27 pM. In comparison to other nanoparticle based methods, the one described here has a strongly improved LOD as shown in the successful analysis of environmental water samples.

The reaction of permanganate and rhodamine B in alkaline solution produces a strong chemiluminescence in the presence of gold nanoprisms. The diminishing effect of Hg2+ on this system was exploited to develop a sensitive method for its determination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Witherow RA, Lyons WB (2008) Mercury deposition in a polar desert ecosystem. Environ Sci Technol 42:4710–4716

    Article  CAS  Google Scholar 

  2. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 108:3443–3480

    Article  CAS  Google Scholar 

  3. Zahira F, Rizwia SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    Article  Google Scholar 

  4. Liu W, Chen J, Xu L, Wu J, Xu H, Zhang H, Wang P (2012) Reversible “off-on” fluorescent chemosensor for Hg2+ based on rhodamine derivative. Spectrochim Acta A 85:38–42

    Article  CAS  Google Scholar 

  5. Leopold K, Foulkes M, Worsfold PJ (2009) Preconcentration techniques for the determination of mercury species in natural waters. TrAC Trends Anal Chem 28:426–435

    Article  CAS  Google Scholar 

  6. Türker AR, Çabuk D, Yalçınkaya O (2013) Preconcentration, speciation, and determination of mercury by solid phase extraction with cold vapor atomic absorption spectrometry. Anal Lett 46:1155–1170

    Article  Google Scholar 

  7. Xiang G, Li L, Jiang X, He L, Fan L (2013) Thiol-modified magnetic silica sorbent for the determination of trace mercury in environmental water samples coupled with cold vapor atomic absorption spectrometry. Anal Lett 46:706–716

    Article  CAS  Google Scholar 

  8. Bagheri H, Naderi M (2009) Immersed single-drop microextraction–electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples. J Hazard Mater 165:353–358

    Article  CAS  Google Scholar 

  9. Yuan X, Yang G, Ding Y, Li X, Zhan X, Zhao Z, Duan Y (2014) An effective analytical system based on a pulsed direct current microplasma source for ultra-trace mercury determination using gold amalgamation cold vapor atomic emission spectrometry. Spectrochim Acta B 93:1–7

    Article  CAS  Google Scholar 

  10. Shoaee H, Roshdi M, Khanlarzadeh N, Beiraghi A (2012) Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim Acta A 98:70–75

    Article  CAS  Google Scholar 

  11. Bernalte E, Sánchez CM, Gil EP, Bertóna P, Olsinac RA, Altamiranoa JC, Wuillouda RG (2011) Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal Chim Acta 689:60–64

    Article  CAS  Google Scholar 

  12. Krishna MVB, Castro J, Brewer TM, Marcus RK (2007) Online mercury speciation through liquid chromatography with particle beam/electron ionization mass spectrometry detection. J Anal At Spectrom 22:283–291

    Article  CAS  Google Scholar 

  13. Kumar A, Kumar V, Upadhyay KK (2011) Aninhydrin based colorimetric molecular switch for Hg2+ and CH3COO/F. Tetrahedron Lett 52:6809–6813

    Article  CAS  Google Scholar 

  14. Niazia A, Momeni-Isfahania T, Ahmaria Z (2009) Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114. J Hazard Mater 165:1200–1203

    Article  Google Scholar 

  15. Quang DT, Wu JS, Luyen ND, Duong T, Dan ND, Bao NC, Quy PT (2011) Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media. Spectrochim Acta A 78:753–756

    Article  Google Scholar 

  16. Cheng X, Li S, Zhong A, Li JQZ (2011) New fluorescent probes for mercury (II) with simple structure. Sensors Actuators B 157:57–63

    Article  CAS  Google Scholar 

  17. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution. Anal Chem 78:8332–8338

    Article  CAS  Google Scholar 

  18. Chen J, Zheng AF, Chen AH, Gao Y, He C, Kai X, Wu G, Chen Y (2007) A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal Chim Acta 599:134–142

    Article  CAS  Google Scholar 

  19. Tao H, Liao X, Xu M, Li S, Zhong F, Yi Z (2014) Determination of trace Hg2+ ions based on the fluorescence resonance energy transfer between fluorescent brightener and CdTe quantum dots. J Lumin 146:376–381

    Article  CAS  Google Scholar 

  20. Bi N, Chen Y, Qi H, Zheng X, Chen Y, Liao X, Zhang H, Tian Y (2012) Spectrophotometric determination of mercury(II) ion using gold nanorod as probe. Sensors Actuators B 166–167:766–771

    Article  Google Scholar 

  21. Leng B, Zou L, Jiang J, Tian H (2009) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensors Actuators B 140:162–169

    Article  CAS  Google Scholar 

  22. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837

    Article  CAS  Google Scholar 

  23. Chen JL, Gao YC, Xu ZB, Wu GH, Chen YC, Zhu CQ (2006) A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577:77–84

    Article  CAS  Google Scholar 

  24. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury (II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 1215–1217

  25. Liang XJ, Wen GQ, Jiang ZL (2013) Spectrophotometric determination of trace Hg2+ with hsDNA-modified nanosilver probe. Appl Mech Mater 319:513–516

    Article  Google Scholar 

  26. Liu D, Qu W, Chen W, Zhang W, Wang Z, Jiang X (2010) Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 82:9606–9610

    Article  CAS  Google Scholar 

  27. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B 161:880–885

    Article  CAS  Google Scholar 

  28. Cai S, Lao K, Lau C, Lu J (2011) “Turn-on” chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles. Anal Chem 83:9702–9708

    Article  CAS  Google Scholar 

  29. Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP (2010) Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. TrAC Trends Anal Chem 29:1113–1126

    Article  CAS  Google Scholar 

  30. Li Q, Zhang L, Li J, Lu C (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TrAC Trends Anal Chem 30:401–413

    Article  Google Scholar 

  31. Amjadi M, Hassanzadeh J, Manzoori JL (2014) Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles. Microchim Acta 181:1851–1856

    Article  CAS  Google Scholar 

  32. Hassanzadeh J, Amjadi M (2015) Sensitive and selective determination of fluvoxamine maleate using an excellent chemiluminescence system based on the alkaline permanganate–Rhodamine B–gold nanoparticles reaction. Luminescence. doi:10.1002/bio.2757

    Google Scholar 

  33. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7

    Article  CAS  Google Scholar 

  34. Hassanzadeh J, Amjadi M, Manzoori JL, Sorouraddin MH (2013) Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application. Spectrochim Acta 107:296–302

    Article  CAS  Google Scholar 

  35. Li QQ, Liu F, Lu C, Lin JM (2011) Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. J Phys Chem C 115:10964–70

    Article  CAS  Google Scholar 

  36. Lu C, Li Q, Chen S, Zhao L, Zheng Z (2011) Gold nanorod-catalyzed luminol chemiluminescence and its selective determination of glutathione in the cell extracts of Saccharomyces cerevisiae. Talanta 85:476–81

    Article  CAS  Google Scholar 

  37. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–76

    Article  CAS  Google Scholar 

  38. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–8

    Article  CAS  Google Scholar 

  39. Wang ZP, Hu JQ, Jin Y, Yao X, Li JH (2006) In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin Chem 52:1958–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hassanzadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaei Oskoei, Y., Bagheri, N. & Hassanzadeh, J. Ultrasensitive determination of mercury(II) using a chemiluminescence system composed of permanganate, rhodamine B and gold nanoprisms. Microchim Acta 182, 1635–1642 (2015). https://doi.org/10.1007/s00604-015-1494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1494-8

Keywords

Navigation