Skip to main content
Log in

Colorimetric determination of neomycin using melamine modified gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The colorimetric assay for neomycin presented here is based on melamine-modified gold nanoparticles (mel-AuNPs) and the finding that hydrogen bonding between melamine and neomycin results in the aggregation of mel-AuNPs. This results in a change in the color of the solution from wine red to blue and in a red-shift of the absorption maximum of the mel-AuNPs. The concentration of neomycin can be determined by spectrophotometry. The ratio of absorptions at 680 nm and 520 nm is linearly related to the logarithm of the concentration of neomycin in the 0.1 to 5.0 nM range and in the 5 to 100 nM range, with regression coefficients of 0.997 and 0.999, respectively. The detection limit (at an S/N ratio of 3) is 30 pM. This is far below the usual safety limit. The method was applied to the detection of trace levels of neomycin in milk samples and gave recoveries between 98 and 105 %.

The presence of neomycin induces the aggregation of melamine-modified gold nanoparticles, this resulting in a color change from red to blue. The concentration of neomycin substrates can be quantified by bare eyes or a UV–Vis spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waksman SA, Lechevalier HA (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109:305–307

    Article  CAS  Google Scholar 

  2. Clark CH (1977) Toxicity of aminoglycoside antibiotics. Mod Vet Pract 58:594–598

    CAS  Google Scholar 

  3. Xu NF, Qu CL, Ma W, Xu LG, Liu LQ, Kuang H, Xu CL (2011) Development and application of one-step ELISA for the detection of neomycin in milk. Food Agr Immunol 22:259–269

    Article  CAS  Google Scholar 

  4. Zhou GD, Wang F, Wang HL, Kambam S, Chen XQ (2013) Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules. Macromol Rapid Commun 34:944–948

    Article  CAS  Google Scholar 

  5. Peng JD, Tang JX, He RX, He YT, Xiao Y (2013) Validation of the high performance liquid chromatography method for the analysis of neomycin sulfate with resonance rayleigh scattering detection. Anal Methods 5:5572–5578

    Article  CAS  Google Scholar 

  6. Stypulkowska K, Blazewicz A, Fijalek Z, Warowna-Grzeskiewicz M, Srebrzynska K (2013) Determination of neomycin and related substances in pharmaceutical preparations by reversed-phase high performance liquid chromatography with mass spectrometry and charged aerosol detection. J Pharm Biomed Anal 76:207–214

    Article  CAS  Google Scholar 

  7. Ding YS, Yu H, Mou SF (2004) Optimizing the quadruple-potential waveform for the pulsed amperometric detection of neomycin. J Chromatogr A 1039:39–43

    Article  CAS  Google Scholar 

  8. Huidobro AL, Garcia A, Barbas C (2009) Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection. J Pharm Biomed Anal 49:1303–1307

    Article  CAS  Google Scholar 

  9. De-Los-Santos-Alvarez N, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2009) SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B. Biosens Bioelectron 24:2547–2553

    Article  CAS  Google Scholar 

  10. Chen YQ, Hu XH, Xiao XL (2010) Sample preparation for determination of neomycin in swine tissues by liquid chromatography-fluorescence detection. Anal Lett 43:2496–2504

    Article  CAS  Google Scholar 

  11. Pimsen R, Khumsri A, Wacharasindhu S, Tumcharern G, Sukwattanasinitt M (2014) Colorimetric detection of dichlorvos using polydiacetylene vesicles with acetylcholinesterase and cationic surfactants. Biosens Bioelectron 62:8–12

    Article  CAS  Google Scholar 

  12. Nidya M, Umadevi M, Rajkumar BJM (2014) Structural, morphological and optical studies of L-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg2+. Spectrochim Acta A 133:265–271

    Article  CAS  Google Scholar 

  13. Wang ZX, Ma LN (2009) Gold nanoparticle probes. Coordin Chem Rev 253:1607–1618

    Article  CAS  Google Scholar 

  14. Liu JF, Zhang XF, Xiao C, Yang AK, Zhao H, He YJ, Li XJ, Yuan ZB (2015) Colorimetric and visual determination of dicyandiamide using gallic acid-capped gold nanoparticles. Microchim Acta 182:435–441

    Article  CAS  Google Scholar 

  15. Chen ZB, Zhang CM, Zhou TH, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta. doi:10.1007/s00604-014-1417-0

    Google Scholar 

  16. Liu DB, Qu WS, Chen WW, Zhang W, Wang Z, Jiang XY (2010) Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 82:9606–9610

    Article  CAS  Google Scholar 

  17. Guo YM, Wang Z, Qu WS, Shao HW, Jiang XY (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069

    Article  CAS  Google Scholar 

  18. Apyari VV, Dmitrienko SG, Arkhipova VV, Atnagulov AG, Gorbunova MV, Zolotov YA (2013) Label-free gold nanoparticles for the determination of neomycin. Spectrochim Acta A Mol Biomol Spectrosc 115:416–420

    Article  CAS  Google Scholar 

  19. Chi H, Liu BH, Guan GJ, Zhang ZP, Han MY (2010) A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 135:1070–1075

    Article  CAS  Google Scholar 

  20. Asami H, Saigusa H (2014) Multiple hydrogen-bonding interactions of uric acid/9-methyluric acid with melamine identified by infrared spectroscopy. J Phys Chem B 118:4851–4857

    Article  CAS  Google Scholar 

  21. Cowan JA, Ohyama T, Wang DQ, Natarajan K (2000) Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions. Nucleic Acids Res 28:2935–2942

    Article  CAS  Google Scholar 

  22. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  Google Scholar 

  23. Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead (II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25:984–989

    Article  CAS  Google Scholar 

  24. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature-Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  25. Haiss W, Thanh TKN, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  26. Zhang XF, Wu ZJ, Xue Y, Zhang Y, Zhao H, He YJ, Li XJ, Yuan ZB (2013) Colorimetric detection of melamine based on the interruption of the synthesis of gold nanoparticles. Anal Methods 5:1930–1934

    Article  CAS  Google Scholar 

  27. Li L, Li BX, Cheng D, Mao LH (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122:895–900

    Article  CAS  Google Scholar 

  28. Kundu J, Neumann O, Janesko BG, Zhang D, Lal S, Barhoumi A, Scuseria GE, Halas NJ (2009) Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced raman and infrared spectroscopies. J Phys Chem C 113:14390–14397

    Article  CAS  Google Scholar 

  29. Chen W, Deng HH, Hong L, Wu ZQ, Wang S, Liu AL, Lin XH, Xia XH (2012) Bare gold nanoparticles as facile and sensitive colorimetric probe for melamine detection. Analyst 137:5382–5386

    Article  CAS  Google Scholar 

  30. Zhang XF, Zhang Y, Zhao H, He YJ, Li XJ, Yuan ZB (2013) Highly sensitive and selective colorimetric sensing of antibiotics in milk. Anal Chim Acta 778:63–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Major National Scientific Research Plan of China (973 Program) (Grant No. 2011CB933202) and the National Natural Science Foundation of China (Grant No. 21205132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Liu, J., Yang, A. et al. Colorimetric determination of neomycin using melamine modified gold nanoparticles. Microchim Acta 182, 1501–1507 (2015). https://doi.org/10.1007/s00604-015-1480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1480-1

Keywords

Navigation