Skip to main content
Log in

Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite consisting of flower-like zinc oxide (ZnO) and reduced functionalized graphene oxide (rFGO) was prepared via a hydrothermal route, and characterized by spectrophotometry, photoluminescence, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The nanocomposite was deposited on the surface of a glassy carbon electrode and studied using impedance spectroscopy. It exhibits excellent electrocatalytic activity toward the oxidation of nitrite. At a working potential of 0.9 V (vs. Ag/AgCl), it displayed a higher current and lower over potential (reduced by up to ~200 mV) than controlled electrodes. This is attributed to the synergistic catalytic effects of the ZnO and rfGO. The oxidation current is linearly related to the concentration of nitrite in the 10 μM to 8 mM range, and the detection limit is 33 μM. Its excellent electrocatalytic activity, wide linear range, low detection limit, high sensitivity, and rapid response time make this nanocomposite-based electrode a potential candidate for practical applications.

Reduced functionalized graphene oxide decorated with flower-like zinc oxide (f-ZnO@rFGO) nanocomposite was obtained via a hydrothermal route. The f-ZnO@rFGO nanocomposite modified electrode was used for selective and sensitive electrochemical detection of nitrite ions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee J-H, Ko K-H, Park B-O (2003) Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J Cryst Growth 247(1–2):119–125

    Article  CAS  Google Scholar 

  2. Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, Yang Z (2005) Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sens Actuators, B 110(2):370–376

    Article  CAS  Google Scholar 

  3. Lu T, Pan L, Li H, Zhu G, Lv T, Liu X, Sun Z, Chen T, Chua DHC (2011) Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J Alloys Compd 509(18):5488–5492

    Article  CAS  Google Scholar 

  4. Li B, Liu T, Wang Y, Wang Z (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 377(1):114–121

    Article  CAS  Google Scholar 

  5. Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6(2):307–312

    Article  CAS  Google Scholar 

  6. Marlinda AR, Huang NM, Muhamad MR, An’amt MN, Chang BYS, Yusoff N, Harrison I, Lim HN, Chia CH, Kumar SV (2012) Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Mater Lett 80:9–12

    Article  CAS  Google Scholar 

  7. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180

    Article  CAS  Google Scholar 

  8. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347

    Article  CAS  Google Scholar 

  9. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  10. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  11. Wang G, Wang B, Park J, Yang J, Shen X, Yao J (2009) Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47(1):68–72

    Article  CAS  Google Scholar 

  12. Hou S, Su S, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501(1):68–74

    Article  CAS  Google Scholar 

  13. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Article  CAS  Google Scholar 

  14. Chen X-m W, G-h JY-q, Y-r W, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136(22):4631–4640

    Article  Google Scholar 

  15. Coleman DH, White RE, Hobbs DT (1995) A parallel‐plate electrochemical reactor model for the destruction of nitrate and nitrite in alkaline waste solutions. J Electrochem Soc 142(4):1152–1161

    Article  CAS  Google Scholar 

  16. Pandikumar A, Manonmani S, Ramaraj R (2012) TiO2-Au nanocomposite materials embedded in polymer matrices and their application in the photocatalytic reduction of nitrite to ammonia. Catal Sci Technol 2(2):345–353

    Article  CAS  Google Scholar 

  17. Radhakrishnan S, Sumathi C, Umar A, Jae Kim S, Wilson J, Dharuman V (2013) Polypyrrole–poly(3,4-ethylenedioxythiophene)–Ag (PPy–PEDOT–Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens Bioelectron 47:133–140

    Article  CAS  Google Scholar 

  18. Veerapandian M, Seo Y-T, Shin H, Yun K, Lee M-H (2012) Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples. Int J Nanomed 7:6123

    Article  CAS  Google Scholar 

  19. Zhang D, Fang Y, Miao Z, Ma M, Du X, Takahashi S, J-i A, Chen Q (2013) Direct electrodeposion of reduced graphene oxide and dendritic copper nanoclusters on glassy carbon electrode for electrochemical detection of nitrite. Electrochim Acta 107:656–663

    Article  CAS  Google Scholar 

  20. Mani V, Periasamy AP, Chen S-M (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78

    Article  CAS  Google Scholar 

  21. Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly (3, 4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177(3–4):411–418

    Article  CAS  Google Scholar 

  22. Cui L, Meng X, Xu M, Shang K, Ai S, Liu Y (2011) Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode. Electrochim Acta 56(27):9769–9774

    Article  CAS  Google Scholar 

  23. Li S-J, Zhao G-Y, Zhang R-X, Hou Y-L, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180(9–10):821–827

    Article  CAS  Google Scholar 

  24. Gholivand M-B, Jalalvand AR, Goicoechea HC (2014) Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles. Mater Sci Eng C 40:109–120

    Article  CAS  Google Scholar 

  25. Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR (2011) Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomed 2011(6):3443–3448

    Article  Google Scholar 

  26. Suresh S, Pandikumar A, Murugesan S, Ramaraj R, Paul Raj S (2011) Metal-free low-cost organic dye-sensitized zno-nanorod photoanode for solid-state solar cell. Mater Express 1(4):307–314

    Article  CAS  Google Scholar 

  27. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437

    Article  CAS  Google Scholar 

  28. Sheppard S, Lambert R, Walker R (1939) Optical sensitizing of silver halides by dyes I. Adsorption of sensitizing dyes. J Chem Phys 7(4):265–273

    Article  CAS  Google Scholar 

  29. Vijay Kumar S, Huang NM, Lim HN, Marlinda A, Harrison I, Chia CH (2013) One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chem Eng J 219:217–224

    Article  CAS  Google Scholar 

  30. Liu Y, Han G, Li Y, Jin M (2011) Flower-like zinc oxide deposited on the film of graphene oxide and its photoluminescence. Mater Lett 65(12):1885–1888

    Article  CAS  Google Scholar 

  31. Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837

    Article  CAS  Google Scholar 

  32. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal, B 148–149:22–28

    Article  Google Scholar 

  33. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290

    Article  CAS  Google Scholar 

  34. Zhou K, Zhu Y, Yang X, Jiang X, Li C (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35(2):353–359

    Article  CAS  Google Scholar 

  35. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678

    Article  CAS  Google Scholar 

  36. Wu J, Shen X, Jiang L, Wang K, Chen K (2010) Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl Surf Sci 256(9):2826–2830

    Article  CAS  Google Scholar 

  37. Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Microchim Acta 52(21):6237–6247

    CAS  Google Scholar 

  38. Pandikumar A, Ramaraj R (2011) Aminosilicate sol–gel embedded core-shell (TiO2-Au) nps nanomaterials modified electrode for the electrochemical detection of nitric oxide. Indian J Chem, Sect A 50(9):1388

    Google Scholar 

  39. Sun W, Zhang S, Liu H, Jin L, Kong J (1999) Electrocatalytic reduction of nitrite at a glassy carbon electrode surface modified with palladium (II)-substituted Keggin type heteropolytungstate. Anal Chim Acta 388(1):103–110

    Article  CAS  Google Scholar 

  40. Guidelli R, Pergola F, Raspi G (1972) Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media. Anal Chem 44(4):745–755

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by a UMRG Program grant (RP007C-13AFR) from the University of Malaya and a High Impact Research Grant (UM.C/HIR/MOHE/SC/21) from the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alagarsamy Pandikumar or Nay Ming Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marlinda, A.R., Pandikumar, A., Yusoff, N. et al. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182, 1113–1122 (2015). https://doi.org/10.1007/s00604-014-1436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1436-x

Keywords

Navigation