Skip to main content
Log in

A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite consisting of gold nanoparticles and the copper(II) complex of cysteine (GNP/Cu-Cys) is shown to represent a useful mimic for the enzyme superoxide dismutase (SOD). The relative activities of plain GNPs, Cu metal, Cys, Cu-Cys and GNP/Cu-Cys were determined and compared to those of native SOD. The value for half-maximal inhibitory concentration of the nanocomposite is 0.3 μg∙mL‾1 which is 3 times higher than that of the native enzyme. The GNPs/Cu-Cys nanocomposite was immobilized on a carbon paste electrode and used as a biomimetic sensor for the detection of superoxide anions. The resulting sensor has a linear range over the concentration range from 3.1 to 326 μM, a detection limit of 2.8 μM (at an S/N of 3), and a sensitivity of 0.018 μA∙μM.cm−2. The selectivity for superoxide anions over potential interferents such as hydrogen peroxide, uric acid and citric acid is excellent.

The electrochemical signal for superoxide anion is produced by reducing O2 •− at a carbon paste electrode modified with gold nanoparticles and the cysteine-copper complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee H, Park W, Lim D (2010) Synthesis and SOD activity of manganese complexes of substituted pyridino pentaaza macrocycles that contain axial auxiliary. Bioorg Med Chem Lett 20(8):2421–2424

    Article  CAS  Google Scholar 

  2. Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wang ZQ, Salvemini D (2003) On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol 140:445–460

    Article  CAS  Google Scholar 

  3. Ge L, Ge S, Liu S, Yu J (2011) Synthesis of a novel rigid artificial superoxide dismutase based on modified hollow mesoporous silica microspheres. J Inorg Organomet Polym Mater 21(4):809–815

    Article  CAS  Google Scholar 

  4. Batinić-Haberle I, Rebouças JS, Spasojević I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13(6):877–918

    Article  Google Scholar 

  5. Riley DP (1999) Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem Rev 99(9):2573–2588

    Article  CAS  Google Scholar 

  6. Yu J, Ge L, Liu S, Dai P, Ge S, Zheng W (2011) Facile and scalable synthesis of a novel rigid artificial superoxide dismutase based on modified hollow mesoporous silica microspheres. Biosens Bioelectron 26(5):1936–1941

    Article  CAS  Google Scholar 

  7. Batinić-Haberle I, Liochev SI, Spasojević I, Fridovich I (1997) A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin. Arch Biochem Biophys 343(2):225–233

    Article  Google Scholar 

  8. Salvemini D, Wang Z-Q, Zweier JL, Samouilov A, Macarthur H, Misko TP, Currie MG, Cuzzocrea S, Sikorski JA, Riley DP (1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286(5438):304–306

    Article  CAS  Google Scholar 

  9. Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D, Batinic-Haberle I (2012) Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta (BBA)-Mol Basis Dis 1822(5):794–814

    Article  CAS  Google Scholar 

  10. Puterová Z, Valentová J, Bojková Z, Kožíšek J, Devínsky F (2011) Synthesis, crystal structure and antiradical effect of copper (II) Schiff base complexes containing five-, six-and unusual seven-membered rings. Dalton Trans 40(7):1484–1490

    Article  Google Scholar 

  11. Patel RN, Singh A, Shukla KK, Patel DK, Sondhiya VP (2010) Copper (II) complexes with N-(2-hydroxyethyl)-2-iminodiacetic acid and imidazoles: crystal structure, spectroscopic studies and superoxide dismutase activity. Transit Met Chem 35(5):577–584

    Article  CAS  Google Scholar 

  12. Gu Q, Le XY, Lin QB, Liao SR, Ma XD, Feng XL (2007) Synthesis, Characterization and SOD Activities of IP‐copper (II)‐L‐amino Acid Complexes. Chin J Chem 25(6):791–796

    Article  CAS  Google Scholar 

  13. Rafiee-Pour H-A, Ghourchian H, Eskandari K (2011) Cysteine function in superosxide dismutase direct electrochemistry and superoxide anion sensing. Anal Bioanal Electrochem 3(3):215–226

    Google Scholar 

  14. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10:1056–1058

    Article  Google Scholar 

  15. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41(6):615–626

    Article  CAS  Google Scholar 

  16. Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y (2008) Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 129(6):322–331

    Article  CAS  Google Scholar 

  17. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S (2008) Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24(14):7354–7364

    Article  CAS  Google Scholar 

  18. JuanáLong Y, FangáLi Y, JiaáZheng J, ZhiáHuang C (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47(43):11939–11941

    Article  Google Scholar 

  19. Hu X, Liu J, Hou S, Wen T, Liu W, Zhang K, He W, Ji Y, Ren H, Wang Q (2011) Research progress of nanoparticles as enzyme mimetics. Sci China Phys, Mech Astron 54(10):1749–1756

    Article  Google Scholar 

  20. Pasquato L, Pengo P, Scrimin P (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14(24):3481–3487

    Article  CAS  Google Scholar 

  21. Villalonga R, Camacho C, Cao R, Hernández J, Matías JC (2007) Amperometric biosensor for xanthine with supramolecular architecture. Chem Commun 9:942–944

    Article  Google Scholar 

  22. Baron R, Willner B, Willner I (2007) Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun 4:323–332

    Article  Google Scholar 

  23. Cao R Jr, Villalonga R, Díaz-García AM, Cao R, Rojo T, Rodríguez-Argüelles MC (2011) Gold nanoparticles enhancing dismutation of superoxide radical by its bis (dithiocarbamato) copper (II) shell. Inorg Chem 50(11):4705–4712

    Article  CAS  Google Scholar 

  24. Hyland K, Auclair C (1981) The formation of superoxide radical anions by a reaction between O2, OH-and dimethyl sulfoxide. Biochem Biophys Res Commun 102(1):531–537

    Article  CAS  Google Scholar 

  25. Monan Ahmad MSI, Tahir N, Islam A (2011) Solvent free synthesis copper (II) cysteine complexes. World Appl Sci 14(2):210–214

    Google Scholar 

  26. Cooperá Stevenson P (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  27. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  Google Scholar 

  28. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  Google Scholar 

  29. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  30. Aryal S, BKC R, Dharmaraj N, Bhattarai N, Kim CH, Kim HY (2006) Spectroscopic identification of SAu interaction in cysteine capped gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 63(1):160–163

    Article  Google Scholar 

  31. Dooley D, Moog R, Liu M, Payne W, LeGall J (1988) Resonance Raman spectra of the copper-sulfur chromophores in achromobacter cycloclastes nitrite reductase. J Biol Chem 263(29):14625–14628

    CAS  Google Scholar 

  32. Venkataramanan M, Murty K, Pradeep T, Deepali W, Vijayamohanan K (2000) Metal Ion Reactivity with 1, 4-benzenedimethanethiol monolayers on gold. Langmuir 16(20):7673–7678

    Article  CAS  Google Scholar 

  33. Socrates G, Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, vol 245. Wiley, Chichester

    Google Scholar 

  34. Varnholt B, Oulevey P, Luber S, Kumara C, Dass A, Burgi T (2014) Structural Information on the Au-S Interface of Thiolate-Protected Gold Clusters: A Raman Spectroscopy Study. J Phys Chem C

  35. Liochev SI, Fridovich I (2010) Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic Biol Med 48(12):1565–1569

    Article  CAS  Google Scholar 

  36. Chen XJ, West AC, Cropek DM, Banta S (2008) Detection of the superoxide radical anion using various alkanethiol monolayers and immobilized cytochrome C. Anal Chem 80(24):9622–9629

    Article  CAS  Google Scholar 

  37. Committee AM (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112(2):199–204

    Article  Google Scholar 

  38. Rajesh S, Sethy NK, Bhargava K, Ilavazhagan G, Singh SK, Karunakaran C (2011) Electrochemical sensor for simultaneous measurement of nitrite and superoxide anion radical using superoxide dismutase-mimetic manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin on polypyrrole matrix. Sens Lett 9(5):1682–1688

    Article  CAS  Google Scholar 

  39. Yuan L, Liu S, Tu W, Zhang Z, Bao J, Dai Z (2014) Biomimetic Superoxide Dismutase Stabilized by Photopolymerization for Superoxide Anions Biosensing and Cell Monitoring. Anal Chem

  40. Kim SK, Kim D, You J-M, Han HS, Jeon S (2012) Non-enzymatic superoxide anion radical sensor based on Pt nanoparticles covalently bonded to thiolated MWCNTs. Electrochim Acta 81:31–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports provided by the Research Council of the University of Tehran are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedayatollah Ghourchian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashtestani, F., Ghourchian, H., Eskandari, K. et al. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 182, 1045–1053 (2015). https://doi.org/10.1007/s00604-014-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1424-1

Keywords

Navigation