Skip to main content
Log in

Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We show that copper nanoclusters coated with bovine serum albumin are viable probes for fluorometric determination of Cu(II) ion. The effect is attributed to the paramagnetic nature of Cu(II) bound to BSA. The ions Hg(II) and Fe(III) also give a strong effect but can be discerned by addition of EDTA. The probe can be regenerated by adding an excess of EDTA. The method is capable of detecting Cu(II) in the 0.02–34 μM, and the limit of detection is 1nM. The method was applied to the determination of Cu(II) in spiked water samples. It is rapid, simple, and fairly sensitive. The method may also be applied to detect Hg(II) and Fe(III) if Cu(II) is absent.

BSA-coated copper nanoclusters (NCs) are added to the sample, and EDTA is then added to block potentially interfering ions. The fluorescence of the NCs increases with increasing concentration of Cu(II) ions being present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Copper: environmental dynamics and human exposure issues. J Toxicol Environ Health Part B 4:341

    Article  CAS  Google Scholar 

  2. Judith RT (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:960

    Google Scholar 

  3. Lin Z, Luo F, Dong T, Zheng L, Wang Y, Chi Y, Chen G (2012) Recyclable fluorescent gold nanocluster membrane for visual sensing of copper (II) ion in aqueous solution. Analyst 137:2394

    Article  CAS  Google Scholar 

  4. Vasimalai N, Prabhakarn A, John SA (2013) A turn-on highly selective and ultrasensitive determination of copper (II) in an aqueous medium using folic acid capped gold nanoparticles as the probe. Nanotechnology 24:505503

    Article  CAS  Google Scholar 

  5. Zhang M, Le HN, Jiang XQ, Guo SM, Yu HJ, Ye BC (2013) A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper(II) based on riboflavin-stabilized gold nanoclusters. Talanta 117:399

    Article  CAS  Google Scholar 

  6. Wang YQ, Zhao T, He XW, Li WY, Zhang YK (2014) A novel core-satellite CdTe/Silica/AuNCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 51:40

    Article  CAS  Google Scholar 

  7. Su YT, Lan GY, Chen WY, Chang HT (2010) Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic Acid. Anal Chem 82:8566

    Article  CAS  Google Scholar 

  8. Zhang GM, Li YH, Xu J, Zhang CH, Shuang SM, Dong C, Choi MMF (2013) Glutathione-protected fluorescent gold nanoclusters for sensitive and selective detection of Cu2+. Sensor Actuators B Chem 183:583

    Article  CAS  Google Scholar 

  9. Su L, Shu T, Wang ZW, Cheng JY, Xue F, Li CZ, Zhang XJ (2013) Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+, sensor. Biosens Bioelectron 44:16

    Article  CAS  Google Scholar 

  10. Lan GY, Huang CC, Chang HT (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259

    Article  CAS  Google Scholar 

  11. Yuan Z, Cai N, Du Y, He Y, Yeung ES (2014) Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem 86:419–426

    Article  CAS  Google Scholar 

  12. Siripinyanond A, Worapanyanond S, Shiowatana J (2005) Field-flow fractionation–inductively coupled plasma mass spectrometry: analternative approach to investigate metal–humic substances interaction. Environ Sci Technol 39:3295

    Article  CAS  Google Scholar 

  13. Bings NH, Bogaerts A, Broekaert JAC (2008) Atomicspectroscopy. Anal Chem 80:4317

    Article  CAS  Google Scholar 

  14. Zhang C, Li Y, Cui XY, Jiang Y, Yan XP (2008) Room temperature ionic liquids enhanced chemical vapor generation of copper, silver and gold following reduction in acidified aqueous solution with KBH4 for atomic fluorescence spectrometry. J Anal At Spectrom 23:1372

    Article  CAS  Google Scholar 

  15. Klein G, Kaufmann D, Schurch S, Reymond JL (2001) A fluorescent metal sensor based on macrocyclic chelation. Chem Commun 6:561

    Article  Google Scholar 

  16. Boiocchi M, Fabbrizzi L, Licchelli M, Sacchi D, Vazquez M, Zampa C (2003) A two-channel molecular dosimeter for the optical detection of copper(II). Chem Commun 15:1812

    Article  Google Scholar 

  17. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177

    Article  CAS  Google Scholar 

  18. Sun L, Hao D, Shen W, Qian Z, Zhu C (2012) Highly sensitive fluorescent sensor for copper (II) based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer. Microchim Acta 177:357

    Article  CAS  Google Scholar 

  19. Cano-Raya C, Fernandez Ramos MD, Capitan Vallvey LF, Wolfbeis OS, Schaeferling M (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper (II) and other metal ions. Appl Spectrosc 59:1209

    Article  CAS  Google Scholar 

  20. Oehme I, Prattes S, Wolfbeis OS, Mohr GJ (1998) The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on the colorimetric reagent Zincon. Talanta 47:595

    Article  CAS  Google Scholar 

  21. Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis OS, Csoregi E (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35

    Article  CAS  Google Scholar 

  22. Xing CF, Shi ZQ, Yu MH, Wang S (2008) Cationic conjugated polyelectrolyte- based fluorometric detection of copper(II) ions in aqueous solution. Polymer 49:2698

    Article  CAS  Google Scholar 

  23. Chen B, Zhong P (2005) A new determining method of copper(II) ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986

    Article  Google Scholar 

  24. Zhang Y, Zhang H, Guo X, Wang H (2008) L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination. Microchem J 89:142

    Article  CAS  Google Scholar 

  25. Luo Y, Li Y, Lv BQ, Zhou ZD, Xiao D, Choi MMF (2009) A new luminol derivative as a fluorescent probe for trace analysis of copper(II). Microchim Acta 164:411

    Article  CAS  Google Scholar 

  26. Yuan X, Luo ZT, Yu Y, Yao QF, Xie JP (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J 8:858

    Article  CAS  Google Scholar 

  27. Lu YZ, Wei WT, Chen W (2012) Copper nanoclusters: synthesis, characterization and properties. Chin Sci Bull 57:41

    Article  CAS  Google Scholar 

  28. Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83:9676

    Article  CAS  Google Scholar 

  29. Jia XF, Yang X, Li J, Li DY, Wang EK (2014) Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem Commun 50:237

    Article  CAS  Google Scholar 

  30. Fernández-Ujados M, Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2013) One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology 24:495601

    Article  Google Scholar 

  31. Gao Z, Su RX, Qi W, Wang LB, He ZM (2014) Copper nanocluster-based fluorescent sensors for sensitive andselective detection of kojic acid in food stuff. Sensor Actuators B Chem 195:359

    Article  CAS  Google Scholar 

  32. Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933

    Article  CAS  Google Scholar 

  33. Liu JM, Cui ML, Jiang SL, Wang XX, Lin LP, Jiao L, Zhang LH, Zheng ZY (2013) BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Anal Methods 5:3942

    Article  CAS  Google Scholar 

  34. Huo FJ, Yin CX, Yang YT, Su J, Chao JB, Liu DS (2012) Ultraviolet-visible light (UV–Vis)-reversible but fluorescence-irreversible chemosensor for copper in water and its application in living cells. Anal Chem 84:2219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Foundation of Education Commission of Hubei Province (Q20111010 and T201101), the Natural Science Foundation of Hubei Province (2011CDB059 and 2011CDA111), Research Fund for the Doctoral Program of Higher Education of China (20114208120006), and National Undergraduate Training Programs for Innovation and Entrepreneurship (201210512006 and 201210512020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Zhu, J., Wang, Q. et al. Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Microchim Acta 182, 909–915 (2015). https://doi.org/10.1007/s00604-014-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1407-2

Keywords

Navigation