Skip to main content
Log in

Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an electrochemical immunoassay for simultaneous detection of the tumor markers carcinoembryonic antigen (CEA) and α-fetoprotein (AFP). Gold nanoparticles (AuNPs) were synthesized inside the internal pore walls of mesoporous silica (MPS). Then, Methylene blue (MB) and 6-ferrocenylhexanethiol (FeC), which act as electrochemical substrates, were incorporated into the channels via the formation of Au-S bonds. Finally, monoclonal antibodies against CEA (anti-CEA) and AFP (anti-AFP) were immobilized in the channels of MB-AuNPs-MPS and FeC-AuNPs-MPS, respectively. Suspensions of anti-CEA/MB-AuNPs-MPS and of anti-AFP/FeC-AuNPs-MPS were deposited on two different sites of the ITO electrode. When incubated with samples containing the two analytes, the formation of electrically nonconductive immunoconjugates blocks electron transfer. Simultaneous detection of CEA and AFP was accomplished by monitoring the current change before and after an immunoreaction has occurred. The AuNPs confined inside the channels are promoting the electron transport and thus improve detection limits. The immunoelectrode responds to CEA in the 0.5–50 ng mL−1 concentration range, and to AFP in concentrations between 0.5 and 100 ng mL−1. The detection limits (at an S/N of 3) are 0.1 ng mL−1 in both cases.

After the corresponding immunological probes were coated onto two different sites of the ITO electrode, the simultaneous detection was accomplished by monitoring the current change of FeC and MB before and after an immunoreaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Wu J, Fu ZF, Yan F, Ju HX (2007) Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trends Anal Chem 26:679

    Article  CAS  Google Scholar 

  2. Wilson MS, Nie WY (2006) Multiplex measurement of seven tumor markers using an electrochemical protein chip. Anal Chem 78:6476

    Article  CAS  Google Scholar 

  3. Wu J, Yan YT, Yan F, Ju HX (2008) Electric field-driven strategy for multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array. Anal Chem 80:6072

    Article  CAS  Google Scholar 

  4. Li Y, Yuan R, Chai YQ, Zhuo Y (2014) Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim Acta 181:679–685

    Article  CAS  Google Scholar 

  5. Pandey B, Demchenko AV, Stine KJ (2012) Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen. Microchim Acta 179:71–81

    Article  CAS  Google Scholar 

  6. Zebda A, Labeau M, Diard JP, Lavalley V, Stambouli V (2010) Electrical resistivity dependence of semi-conductive oxide electrode on the label-free electrochemical detection of DNA. Sensors Actuators B 144:176

    Article  CAS  Google Scholar 

  7. Tlili C, Myunga NV, Shettyb V, Mulchandani A (2011) Label-free chemiresistor immunosensor for stress biomarker cortisol in saliva. Biosens Bioelectron 26:4382

    Article  CAS  Google Scholar 

  8. Luo Y, Chen M, Wen QJ, Zhao M, Zhang B, Li XY, Wang F, Huang Q, Yao CY, Jiang TL, Cai JR, Fu WL (2006) Rapid and simultaneous quantification of 4 urinary proteins by piezoelectric quartz crystal microbalance immunosensorarray. Clin Chem 52:2273

    Article  CAS  Google Scholar 

  9. Lee HJ, Namkoong K, Cho EC, Ko C, Park JC, Lee SS (2009) Surface acoustic wave immunosensor for real-time detection of hepatitis B surface antibodies in whole blood samples. Biosens Bioelectron 24:3120

    Article  CAS  Google Scholar 

  10. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, Mckendry R, Güntherodt HJ, Hegner M, Gerber C (2006) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1:214

    Article  CAS  Google Scholar 

  11. Chen ZG, Lei YL, Chen X (2012) Immunoassay for serum alpha-fetoprotein using silver nanoparticles and detection via resonance light scattering. Microchim Acta 179:241–248

    Article  CAS  Google Scholar 

  12. Lu Y, Huang XY, Ren JC (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180:635–642

    Article  CAS  Google Scholar 

  13. Nasef H, Beni V, Ozalp VC, O’Sullivan CK (2010) Cystic fibrosis: a label-free detection approach based on thermally modulated electrochemical impedance spectroscopy. Anal Bioanal Chem 396:2565

    Article  CAS  Google Scholar 

  14. Loyprasert S, Thavarungkui P, Asawatreatanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78

    Article  CAS  Google Scholar 

  15. Zhang DD, Peng YG, Qi HG, Gao Q, Zhang CX (2010) Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron 25:1088

    Article  CAS  Google Scholar 

  16. Feng DX, Lu XC, Dong X, Ling YY, Zhang YZ (2013) Label-free electrochemical immunosensors for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180:767–774

    Article  CAS  Google Scholar 

  17. Escosura-Muñiz ADL, Merkoçi A (2010) Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochem Commun 12:859

    Article  Google Scholar 

  18. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226

    Article  CAS  Google Scholar 

  19. Martin CR, Siwy Z (2004) Molecular filters: pores within pores. Nat Mater 3:284

    Article  CAS  Google Scholar 

  20. Lin JH, Wei ZJ, Mao CM (2011) A label-free immunosensor based on modified mesoporous silica for simultaneous determination of tumor markers. Biosens Bioelectron 29:40–45

    Article  CAS  Google Scholar 

  21. Lin JH, Wei ZJ, Chu PF (2012) A label-free immunosensor by controlled fabrication of monoclonal antibodies and gold nanoparticles inside the mesopores. Anal Biochem 421:97–102

    Article  CAS  Google Scholar 

  22. Lin JH, Wei ZJ, Zhang HH, Shao MJ (2013) Sensitive immunosensor for the label-free determination of tumor marker based on carbon nanotubes/mesoporous silica and modified electrode. Biosens Bioelectron 41:342–347

    Article  CAS  Google Scholar 

  23. Lin JH, Zhang HH, Shao MJ (2014) A label-free immunosensor based on ionic liquids modified mesoporous silica for simultaneous determination of two tumor markers. Acta Chim Sin 72:241–245

    Article  CAS  Google Scholar 

  24. Lin JH, Qu W, Zhang SS (2007) Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal Biochem 360:288–293

    Article  CAS  Google Scholar 

  25. He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH (2013) Combined use of AFP, CEA, CA125 and CA19-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol 13:87

    Article  CAS  Google Scholar 

  26. Fu ZF, Yan F, Liu H, Yang ZJ, Ju HX (2008) Channel-resolved multianalyte immunosensing system for flow-through chemiluminescent detection of α-fetoprotein and carcinoembryonic antigen. Biosens Bioelectron 23:1063–1069

    Article  CAS  Google Scholar 

  27. Yang ZJ, Zong C, Yan F, Ju HX (2010) Automated chemiluminescent dual-analyte immunoassay based on resolved immunosensing channels. Talanta 82:1462–1467

    Article  CAS  Google Scholar 

  28. Tian JN, Zhou LJ, Zhao YC, Wang Y, Peng Y, Zhao SL (2012) Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92:72–77

    Article  CAS  Google Scholar 

  29. Zhang Y, Liu W, Ge S, Yan M, Wang S, Yu J, Li N, Song X (2013) Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers. Biosens Bioelectron 41:684–690

    Article  CAS  Google Scholar 

  30. Guo ZY, Hao TT, Du SP, Chen BB, Wang ZB, Li X, Wang S (2013) Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge. Biosens Bioelectron 44:101–107

    Article  CAS  Google Scholar 

  31. Zhang B, Zhang X, Yan HH, Xu SJ, Tang DH, Fu WL (2007) A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor. Biosens Bioelectron 23:19–25

    Article  Google Scholar 

  32. Lai GS, Wu J, Leng C, Ju HX, Yan F (2011) Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase functionalized silica nanosphere tags. Biosens Bioelectron 26:3782–3787

    Article  CAS  Google Scholar 

  33. Feng DX, Li LH, Han XW, Fang X, Li XZ, Zhang YZ (2014) Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sensors Actuators B 201:360–368

    Article  CAS  Google Scholar 

  34. Lai WQ, Zhuang JY, Tang J, Chen GN, Tang DP (2012) One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178:357–365

    Article  CAS  Google Scholar 

  35. Jia XL, Liu ZM, Liu N, Ma ZF (2014) A label-free immunosensors based on grapheme nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens Bioelectron 53:160–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Natural Science Foundation of China (No 20905041 and 21075073), the Doctoral foundation of Shandong Province (BS2011SW008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehua Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhang, H. & Niu, S. Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182, 719–726 (2015). https://doi.org/10.1007/s00604-014-1378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1378-3

Keywords

Navigation