Skip to main content
Log in

Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We are presenting a colorimetric assay for mercury (II) ions. It is based on citosan-functionalized gold nanoparticles (AuNPs) that act as a signaling probe. Hg (II) induces the aggregation of the chitosan-AuNPs through a chelation reaction that occurs between chitosan and Hg (II). This results in a strong decrease of the absorbance of the modified AuNPs and a color change from red to blue. This sensing system displays excellent selectivity over other metal ions and a detection limit as low as 1.35 μM which is lower than the allowed level of Hg (II) in drinking water (30 μM) as defined by World Health Organization. The method is inexpensive, facile, sensitive, and does not require the addition of other reagents in order to improving sensitivity.

An inexpensive, facile, and ssensitive, colorimetric method for the detection of Hg (II) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203

    Article  CAS  Google Scholar 

  2. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  3. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  4. Moreton JA, Delves HTJ (1998) Simple direct method for the determination of total mercury levels in blood and urine and nitric acid digests of fish by inductively coupled plasma mass spectrometry. Anal Atom Spectrom 13:659–665

    Article  CAS  Google Scholar 

  5. Wan CC, Chen CS, Jiang SJ (1997) Determination of mercury compounds in water samples by liquid chromatography inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator. J Anal At Spectrom 12:683–687

    Article  CAS  Google Scholar 

  6. Geng W, Nakajima T, Takanashi H, Ohki A (2008) Determination of mercury in ash and soil samples by oxygen flask combustion method-cold vapor atomic fluorescence spectrometry (CVAFS). J Hazard Mater 154:325–30

    Article  CAS  Google Scholar 

  7. Nolan EM, Lippard SJA (2003) “Turn-on” fluorescent sensor for detection of mercuric ion in aqueous media. J Am Chem Soc 125:14270–14271

    Article  CAS  Google Scholar 

  8. Kim IB, Bunz UHF (2006) Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J Am Chem Soc 128:2818–2819

    Article  CAS  Google Scholar 

  9. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Tanaka Y, Kondo Y, Sawa R, Fujimoto T, Machinami T, Ono A (2006) J Am Chem Soc 128:2172

    Article  CAS  Google Scholar 

  10. Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46:7587–7590

    Article  CAS  Google Scholar 

  11. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Ray PC (2008) Highly selective detection of Hg2+ ion using NLO properties of gold nanomaterial. J Am Chem Soc 130:8038–8042

    Article  CAS  Google Scholar 

  12. Palomares E, Vilar R, Durrant JR (2004) Heterogeneous colorimetric sensor for mercuric salts. Chem Commun 4:362–363

    Article  Google Scholar 

  13. Guo W, Yuan J, Wang E (2009) Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 23:3395–3397

    Article  Google Scholar 

  14. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  15. Zhao WA, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9:2363–2371

    Article  CAS  Google Scholar 

  16. Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE (2011) Rapid identification of bacteria with a disposable colorimetric sensor array. J Am Chem Soc 133:7571–7576

    Article  CAS  Google Scholar 

  17. Laurieri N, Crawford MHJ, Kawamura A, Westwood IM, Robinson J, Fletcher AM, Davies SG, Sim E, Russell AJ (2010) J Am Chem Soc 132:3238

    Article  CAS  Google Scholar 

  18. Sardar R, Rark JW, Shumaker-Parry JS (2007) Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water. Langmuir 23:11883–11889

    Article  CAS  Google Scholar 

  19. Huang CC, Li YF, Cao ZH, Tan WH, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  20. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  21. Li L, Li B, Cheng D, Mao L (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122:895–900

    Article  CAS  Google Scholar 

  22. Ma Y, Jiang L, Mei Y, Song R, Tian D, Huang H (2013) Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles. Analyst 138:5338–5343

    Article  CAS  Google Scholar 

  23. Du JJ, Yin SY, Jiang L, Ma B, Chen XD (2013) A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun 49:4196–4198

    Article  CAS  Google Scholar 

  24. Tan DD, He Y, Xing XJ, Zhao Y, Tang HW, Pang DW (2013) Aptamer functionalized gold nanoparticles based fluorescent probe for the detection of mercury (II) ion in aqueous solution. Talanta 113:26–30

    Article  CAS  Google Scholar 

  25. Homraruen D, Sirijindalert T, Dubas L, Sukwattanasinitt M, Ajavakom A (2013) Selective fluorescent sensor for mercury ions in aqueous media using a 1,4-dihydropyridine derivative. Tetrahedron 69:1617–1621

    Article  CAS  Google Scholar 

  26. Hu B, Hu LL, Chen ML, Wang JH (2013) A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron 49:499–505

    Article  CAS  Google Scholar 

  27. Zhang YQ, Gao LJ, Wen LP, Heng LP, Song YL (2013) Highly sensitive, selective and reusable mercury(II) ion sensor based on a ssDNA-functionalized photonic crystal film. Phys Chem Chem Phys 15:11943–11949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (KM201410028006) and the Natural Science Foundation of China (No. 21371123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, C., Tan, Y. et al. Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182, 611–616 (2015). https://doi.org/10.1007/s00604-014-1365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1365-8

Keywords

Navigation