Skip to main content

Advertisement

Log in

Bridge DNA amplification of cancer-associated genes on cross-linked agarose microbeads

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cross-linked agarose substrate was studied as a 3D support for bridge solid-phase DNA amplification (SPA). In this kind of SPA, primers are immobilized on agarose beads. Flow cell studies of SPA in real-time experiments showed that the amplification efficiency is strongly affected by (a) the presence of a linker between the primer and substrate, and (b) by the loading with primers. In fact, a high loading density may compromise SPA. The analysis of real time SPA curves using geometric growth model highlighted the advantage of 3D agarose support over the flat surfaces. The potential of bridge 3D SPA in DNA diagnostics was successfully demonstrated by on-chip analysis of mutations of the cancer-associated genes BRCA1/2 and CHEK2.

A cross-linked agarose substrate was studied as a 3D support for bridge solid-phase DNA amplification (SPA). In this kind of SPA, primers are immobilized on agarose beads. The potential of bridge 3D SPA in DNA diagnostics was successfully demonstrated by on-chip analysis of mutations of the cancer-associated genes BRCA1/2 and CHEK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  2. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  Google Scholar 

  3. Mitterer G, Huber M, Leidinger E, Kirisits C, Lubitz W, Mueller MW, Schmidt WM (2004) Microarray-based identification of bacteria in clinical samples by solid-phase PCR amplification of 23S ribosomal DNA sequences. J Clin Microbiol 42:1048–1057

    Article  CAS  Google Scholar 

  4. Sun Y, Dhumpa R, Bang DD, Handberg K, Wolff A (2011) DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7. Diagn Microbiol Infect Dis 69:432–439

    Article  CAS  Google Scholar 

  5. Liu H, Li S, Liu L, Tian L, He N (2009) Multiplex single nucleotide polymorphisms genotyping using solid-phase single base extension on magnetic nanoparticles. Anal Biochem 386:126–128

    Article  CAS  Google Scholar 

  6. Pemov A, Modi H, Chandler DP, Bavykin S (2005) DNA analysis with multiplex microarray-enhanced PCR. Nucleic Acids Res 33:e11

    Article  CAS  Google Scholar 

  7. Khan Z, Poetter K, Park DJ (2008) Enhanced solid phase PCR: mechanisms to increase priming by solid support primers. Anal Biochem 375:391–393

    Article  CAS  Google Scholar 

  8. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta. doi:10.1007/s00604-014-1198-5

    Google Scholar 

  9. Sjoroos M, Ilonen J, Lovgren T (2001) Solid-Phase PCR with hybridization and time resolved fluorometry for detection of HLA-B27. Clin Chem 47:498–504

    CAS  Google Scholar 

  10. Carmon A, Vision TJ, Mitchell SE, Thannhauser TW, Müller U, Kresovich S (2002) Solid-phase PCR in microwells: effects of linker length and composition on tethering, hybridization, and extension. BioTechniques 32:410–420

    CAS  Google Scholar 

  11. Palanisamy R, Connolly AR, Trau M (2010) Considerations of solid-Phase DNA amplification. Bioconjug Chem 21:690–695

    Article  CAS  Google Scholar 

  12. Kojima T, Takei Y, Ohtsuka M, Kawarasaki Y, Yamane T, Nakano H (2005) PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 33:e150

    Article  Google Scholar 

  13. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J-J, Mayer P, Kawashima E (2000) Solid phase DNA amplification: characterization of primer attachment and amplification mechanisms. Nucleic Acids Res 28:87e

    Article  Google Scholar 

  14. Kinoshita K, Fujimoto K, Yakabe T, Saito S, Hamaguchi Y, Kikuchi T, Nonaka K, Murata S, Masuda D, Takada W, Funaoka S, Arai S, Nakanishi H, Yokoyama K, Fujiwar K, Matsubara K (2007) Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer. Nucleic Acids Res 35:e3

    Article  Google Scholar 

  15. Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168

    Article  Google Scholar 

  16. Shapero MH, Leuther KK, Nguyen A, Scott M, Jones KW (2001) SNP genotyping by multiplexed solid-phase amplification and fluorescent minisequencing. Genome Res 11:1926–1934

    CAS  Google Scholar 

  17. Huang H, Xiao P, Qi Z, Bu Y, Liua W, Zhou G (2009) A gel-based solid-phase amplification and its application for SNP typing and sequencing on-chip. Analyst 134:2434–2440

    Article  CAS  Google Scholar 

  18. Khodakov DA, Zakharova NV, Gryadunov DA, Filatov FP, Zasedatelev AS, Mikhailovich VM (2008) An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques 44:241–248

    Article  CAS  Google Scholar 

  19. Stamm S, Brosius J (1991) Sanchored PCR: PCR with cDNA coupled to a solid phase. Nucleic Acids Res 19:1350

    Article  CAS  Google Scholar 

  20. Sato K, Ishii R, Sasaki N, Sato K, Nilsson M (2013) Bead-based padlock rolling circle amplification for single DNA molecule counting. Anal Biochem 437:43–45

    Article  CAS  Google Scholar 

  21. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genom Human Genet 9:387–402

    Article  CAS  Google Scholar 

  22. Afanassiev V, Hanemann V, Wölfl S (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Res 28:e66

    Article  CAS  Google Scholar 

  23. Wang H, Li J, Liu H, Liu Q, Mei Q, Wang Y, Zhu J, He N, Lu Z (2002) Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Res 30:e61

    Article  Google Scholar 

  24. Vasiliskov VA, Chudinov AV, Chechetkin VR, Surzhikov SA, Zasedatelev AS, Mikhailovich VM (2009) Separate production of single-stranded DNA is not necessary: circuit denaturation of double-stranded DNA followed by hybridization of single strands on oligonucleotide microchips. J Biomol Struct Dyn 27:347–360

    Article  CAS  Google Scholar 

  25. Guo Z, Guifoyle RA, Thiel AJ, Wang R, Smith LM (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22:5456–5465

    Article  CAS  Google Scholar 

  26. Shchepinov MS, Case-Green SC, Southern EM (1997) Steric factors influencing hybridization of nucleic acids to oligonucleotide arrays. Nucleic Acids Res 25:1155–1161

    Article  CAS  Google Scholar 

  27. Kejnovská I, Kypr J, Vorlícková M (2007) Oligo(dT) is not a correct native PAGE marker for single-stranded DNA. Biochem Biophys Res Commun 353:776–779

    Article  Google Scholar 

  28. Mercier JF, Slater GW, Mayer P (2003) Solid phase DNA amplification: a simple Monte Carlo lattice model. Biophys J 85:2075–2086

    Article  CAS  Google Scholar 

  29. Mercier JF, Slater GW (2005) Solid phase DNA amplification: a Brownian dynamics study of crowding effects. Biophys J 89:32–42

    Article  CAS  Google Scholar 

  30. Nasedkina TV, Guseva NA, Gra OA, Mityaeva ON, Chudinov AV, Zasedatelev AS (2009) Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays. Mol Diagn Ther 13:91–102

    Article  CAS  Google Scholar 

  31. Fedorova OE, Liubchenko LN, Paiadini IuG, Kazubskaia TP, Amosenko FA, Gar'kavtseva RF, Zasedatelev AS, Nasedkina TV (2007) Analysis of BRCA1/2 and CHEK2 mutations in ovarian cancer and primary multiple tumors involving the ovaries. Patients of Russian population using biochips. Mol Biol (Mosk) 41:37–42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Timofeev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudinov, A.V., Kolganova, N.A., Egorov, A.E. et al. Bridge DNA amplification of cancer-associated genes on cross-linked agarose microbeads. Microchim Acta 182, 557–563 (2015). https://doi.org/10.1007/s00604-014-1357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1357-8

Keywords

Navigation