Skip to main content

Advertisement

Log in

A microchip based fluoride sensor based on the use of CdO doped ferric oxide nanocubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

CdO-doped Fe2O3 nanocubes (NCs) were prepared by a hydrothermal method using reducing precursors in alkaline medium, and characterized by UV/vis, FT-IR, Raman, and X-ray photoelectron spectroscopy, by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and field-emission scanning electron microscopy. The NCs were then deposited on a μ-chip with a surface area (~0.0222 cm2) to fabricate a sensor for detecting fluoride. Compared to sensor performance using gold-electrodes, the new sensor with microchip exhibits better sensitivity, a wider dynamic range, and a better long-term stability. The calibration plot is linear (r2 = 0.9764) over the 10.0 nmolL−1 to 1.0 mmolL−1 fluoride concentration range. The sensitivity is ~2.170 μA cm−2 mmolL−2, and the detection limit (DL, at an SNR of 3) is ~1.8 ± 0.02 nmolL−1. The sensor is fairly simple, works reliably, requires a sample volume of 70.0 μL only, and can be easily integrated into a μ-chip.

Fabrication of highly sensitive (~2.170 μA cm−2 mmolL−2) and selective fluoride sensor based on hydrothermally prepared CdO-doped Fe2O3 nanocubes deposited onto μ-chip with a detection limit as low as 1.8 ± 0.02 nmolL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pagliano E, Meija J, Ding J, Sturgeon RE, D’Ulivo A, Mester Z (2013) Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry. Anal Chem 85:877

    Article  CAS  Google Scholar 

  2. Hensley AL, Barney JE (1960) Spectrophotometric determination of fluoride with thorium chloranilate. Anal Chem 32:828

    Article  CAS  Google Scholar 

  3. Nishimura T, Xu SY, Jiang YB, Fossey JS, Sakurai K, Bull SD, James TD (2013) A simple visual sensor with the potential for determining the concentration of fluoride in water at environmentally significant levels. Chem Commun 49:478

    Article  CAS  Google Scholar 

  4. Cao QY, Li M, Zhou L, Wang ZW (2014) New 2,2′:6′,2′′-terpyridines as colorimetric and fluorescent sensors for fluoride ions. RSC Adv 4:4041

    Article  CAS  Google Scholar 

  5. Chu X, Liang S, Chen T, Zhang Q (2010) Trimethylamine sensing properties of CdO–Fe2O3 nano-materials prepared using co-precipitation method in the presence of PEG400. Mater Chem Phys 123:396

    Article  CAS  Google Scholar 

  6. Liu X, Xu Z, Liu Y, Shen Y (1998) A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials. Sens Actuator B: Chem 52:270

    Article  CAS  Google Scholar 

  7. Ghozza AM, El-Shobaky HG (2006) Effect of Li2O-doping of CdO/Fe2O3 system on the formation of nanocrystalline CdFe2O4. Mater Sci Eng: B 127:233

    Article  CAS  Google Scholar 

  8. Rusu D, Ardelean I (2008) Structural studies of Fe2O3–Bi2O3–CdO glass system. Mater Resear Bull 43:1724

    Article  CAS  Google Scholar 

  9. Abbasi MA, Ibupoto ZH, Khan A, Nur O, Willander M (2013) Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures. Mater Lett 108:149

    Article  CAS  Google Scholar 

  10. Rouhi J, Alimanesh M, Mahmud S, Dalvand RA, Ooi CHR, Rusop M (2014) A novel method for synthesis of well-aligned hexagonal cone-shaped ZnO nanostructures in field emission applications. Mater Lett 125:147

    Article  CAS  Google Scholar 

  11. Hsu NF, Chung TK, Chang M, Chen HJ (2013) Rapid synthesis of piezoelectric ZnO-Nanostructures for micro power-generators. J Mater Sci Technol 29:893

    Article  CAS  Google Scholar 

  12. Singh T, Pandya DK, Singh R (2011) Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition. J Alloy Comp 509:5095

    Article  CAS  Google Scholar 

  13. Qu P, Yan S, Meng H (2010) Controllable growth of cadmium hydroxide nanostructures by hydrothermal method. Sol Stat Sci 12:83

    Article  CAS  Google Scholar 

  14. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102

    Article  CAS  Google Scholar 

  15. Schäferling M (2012) The Art of Fluorescence Imaging with Chemical Sensors. Angew Chem Int Ed 51:3532

    Article  Google Scholar 

  16. Wade CR, Broomsgrove AEJ, Aldridge S, Gabbaï FP (2010) Fluoride ion complexation and sensing using organoboron compounds. Chem Rev 110:3958

    Article  CAS  Google Scholar 

  17. Galbraith E, James TD (2010) Boron based anion receptors as sensors. Chem Soc Rev 39:3831

    Article  CAS  Google Scholar 

  18. Kim Y, Gabbaï FP (2009) Cationic boranes for the complexation of fluoride ions in water below the 4 ppm maximum contaminant level. J Am Chem Soc 131:3363

    Article  CAS  Google Scholar 

  19. Ke I, Myahkostupov M, Castellano FN, Gabbaï FP (2012) Stibonium ions for the fluorescence turn-on sensing of F in drinking water at parts per million concentrations. J Am Chem Soc 134:15309–15311

    Article  CAS  Google Scholar 

  20. Descalzo AB (2002) A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41. Chem Comm 562–563

  21. Guha S, Saha S (2010) Fluoride Ion Sensing by an Anion-π Interaction. J Am Chem Soc 132:17674

    Article  CAS  Google Scholar 

  22. Zhao H, Gabbaï FP (2010) A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat Chem 2:984

    Article  CAS  Google Scholar 

  23. Kitagawa S, Kitaura R, Noro SI (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  24. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks (2009). Chem Soc Rev 38:1477

    Article  CAS  Google Scholar 

  25. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330

    Article  CAS  Google Scholar 

  26. Badr IHA, Meyerhoff ME (2005) Fluoride-selective optical sensor based on aluminum (III) − Octaethylporphyrin in thin polymeric film: further characterization and practical application. Anal Chem 77:6719

    Article  CAS  Google Scholar 

  27. Ghozza AM, El-Shobaky HG (2006) Effect of Li2O-doping of CdO/Fe2O3 system on the formation of nanocrystalline CdFe2O4. Mater Sci Eng: B 127:233

    Article  CAS  Google Scholar 

  28. Chiba K, Tsunoda K, Haraguchi H, Fuwa K (1980) Determination of fluorine in urine and blood serum by aluminum monofluoride molecular absorption spectrometry and with a fluoride ion-selective electrode. Anal Chem 52:1582

    Article  CAS  Google Scholar 

  29. Badr IHA, Meyerhoff ME (2005) Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum (III) octaethylporphyrin in thin polymeric film. J Am Chem Soc 127:5318

    Article  CAS  Google Scholar 

  30. Pillai AB, Varghese B, Madhusoodanan KN (2012) Design and development of novel sensors for the determination of fluoride in water. Environ Sci Technol 46:404

    Article  Google Scholar 

  31. Sagot MA, Heutte F, Renard PY, Dollé F, Pradelles P, Ezan E (2004) Detection of chemicals by a reporter immunoassay: application to fluoride. Anal Chem 76:4286

    Article  CAS  Google Scholar 

  32. Bumsted HE, Wells JC (1952) Spectrophotometric method for determination of fluoride ion. Anal Chem 24:1595

    Article  CAS  Google Scholar 

  33. Bartholomaus L, Vasiliev AA, Moritz W (2000) Semiconductor sensors for fluorine detection optimization for low and high concentration. Sens Actuator B 65:270

    Article  CAS  Google Scholar 

  34. Cernanska M, Tomcik P, Janosikova Z, Rievaj M, Bustin D (2011) Talanta 83:1472

    Article  CAS  Google Scholar 

  35. Jia Y, Chen X, Ni Q, Li L, Ju C (2013) Dependence of the impact response of polyvinylidene fluoride sensors on their supporting materials elasticity. Sensors 13:8669

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. 130-179-D1435. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Rahman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Khan, S.B. & Asiri, A.M. A microchip based fluoride sensor based on the use of CdO doped ferric oxide nanocubes. Microchim Acta 182, 487–494 (2015). https://doi.org/10.1007/s00604-014-1345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1345-z

Keywords

Navigation