Skip to main content
Log in

One-pot synthesis of ternary hybrid nanomaterial composed of a porphyrin-functionalized graphene, tin oxide, and gold nanoparticles, and its application to the simultaneous determination of epinephrine and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We reported on the one-pot synthesis of a ternary hybrid material composed of graphene functionalized with 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin, tin oxide, and gold nanoparticles. The composite was deposited on a glassy carbon electrode to give an electrode excellent electrocatalytic activity towards the oxidation of epinephrine (EP). The oxidation peaks for EP and uric acid (UA) occur at 190 and 322 mV, respectively, and thus are well separated. This allows for a simultaneous determination of EP and UA. Under optimal conditions, the linear response range in simultaneous determination of EP and UA is from 0.5 to 100 μM for EP, and from 2.0 to 100 μM for UA. The detection limits are at 50 nM for EP and at 500 nM for UA (at an S/N ratio of 3). The sensor was employed to quantify EP and UA in spiked urine samples with satisfactory results.

A novel one-pot synthesis of ternary graphene/SnO2/Au was realized. The obtained nanocomposites modified glassy carbon electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of epinephrine and uric acid. The oxidation peaks of epinephrine and uric acid were separated from each other by approximately 132 mV, which allows their simultaneously determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide–MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  2. Eda G, Emrah Unalan H, Rupesinghe N, Amaratunga GAJ, Chhowalla M (2008) Field emission from graphene based composite thin films. Appl Phys Lett 93:233502

    Article  Google Scholar 

  3. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266

    Article  CAS  Google Scholar 

  4. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Grácio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  5. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    Article  CAS  Google Scholar 

  6. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852

    Article  CAS  Google Scholar 

  7. Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21:5972–5977

    Article  CAS  Google Scholar 

  8. Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641

    Article  CAS  Google Scholar 

  9. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  10. Zhang J, Xiong Z, Zhao XS (2011) Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640

    Article  CAS  Google Scholar 

  11. Li FH, Song JF, Yang HF, Gan SY, Zhang QX, Han DX, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455602

    Article  Google Scholar 

  12. Guo S, Dong S, Wang E (2010) Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv Mater 22:1269–1272

    Article  CAS  Google Scholar 

  13. Yoo SJ, Jeon TY, Lee KS, Park KW, Sung YE (2010) Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem Commun 46:794–796

    Article  CAS  Google Scholar 

  14. Xia BY, Wang B, Wu HB, Liu Z, Wang X, Lou XW (2012) Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. J Mater Chem 22:16499–16505

    Article  CAS  Google Scholar 

  15. Tang YH, Luo SL, Teng YR, Liu CB, Xu XL, Zhang XL, Chen L (2012) Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J Hazard Mater 241–242:323–330

    Article  Google Scholar 

  16. Li BN, Niu LM, Luo HQ (2005) Electrochemical behavior of uric acid and epinephrine at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Microchim Acta 153:37–44

    Google Scholar 

  17. Thomas T, Mascarenhas RJ, Martis P, Mekhalif Z, Swamy BE (2013) Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid. Mater Sci Eng C 33:3294–3302

    Article  CAS  Google Scholar 

  18. Beitollahi H, Ardakani MM, Ganjipour B, Naeimi H (2008) Novel 2,2'-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron 24:362–368

    Article  CAS  Google Scholar 

  19. Ensafi AA, Taei M, Khayamian T (2010) Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly (p-xylenolsulfonephthalein) modified glassy carbon electrode. Colloids Surf B 79:480–487

    Article  CAS  Google Scholar 

  20. Li J, Lin XQ (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222–230

    Article  CAS  Google Scholar 

  21. Tsai TH, Thiagarajan S, Chen SM, Cheng CY (2012) Ionic liquid assisted synthesis of nano Pd–Au particles and application for the detection of epinephrine, dopamine and uric acid. Thin Solid Films 520:3054–3059

    Article  CAS  Google Scholar 

  22. Zou L, Li Y, Cao S, Ye B (2013) Gold nanoparticles/polyaniline langmuir-blodgett film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid. Talanta 117:333–337

    Article  CAS  Google Scholar 

  23. Yang AK, Xue Y, Zhang Y, Zhang XF, Zhao H, Li XJ, He YJ, Yuan ZB (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811

    Article  CAS  Google Scholar 

  24. Ghosh A, Rao KV, George SJ, Rao CN (2010) Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem Er J 16:2700–2704

    CAS  Google Scholar 

  25. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  Google Scholar 

  26. Wang XR, Tabakman SM, Dai HJ (2008) Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 130:8152–8153

    Article  CAS  Google Scholar 

  27. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  28. Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JM (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968

    Article  CAS  Google Scholar 

  29. Chen JY, Collier CP (2005) Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B 109:7605–7609

    Article  CAS  Google Scholar 

  30. Hawley MD, Tatawawadi SV, Piekarski S, Adams RN (1967) Electrochemical studies of the oxidation pathways of catecholamines. J Am Chem Soc 89:447–450

    Article  CAS  Google Scholar 

  31. Kim SH, Lee JW, Yeo IH (2000) Spectroelectrochemical and electrochemical behavior of epinephrine at a gold electrode. Electrochim Acta 45:2889–2895

    Article  CAS  Google Scholar 

  32. Shahrokhian S, Ghalkhani M, Amini MK (2009) Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sens Actuators B 137:669–675

    Article  CAS  Google Scholar 

  33. Babaei A, Babazadeh M, Afrasiabi M (2011) A sensitive simultaneous determination of adrenalin and paracetamol on a glassy carbon electrode coated with a film of chitosan/room temperature ionic liquid/single-walled carbon nanotubes nanocomposite. Chin J Chem 29:2157–2164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Major National Scientific Research Plan of China (973 Program) (Grant No. 2011CB933202) and the National Natural Science Foundation of China (Grant No. 21205132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Xue, Y., Zhao, H. et al. One-pot synthesis of ternary hybrid nanomaterial composed of a porphyrin-functionalized graphene, tin oxide, and gold nanoparticles, and its application to the simultaneous determination of epinephrine and uric acid. Microchim Acta 182, 341–349 (2015). https://doi.org/10.1007/s00604-014-1328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1328-0

Keywords

Navigation