Skip to main content
Log in

Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive thin-film pH micro-sensor has been fabricated by deposition of lead dioxide (β-PbO2) nanoparticles (NPs) on a planar gold electrode. The resulting pH microchip electrode displays excellent potentiometric response to pH values with a super-Nernstian slope of 84 mVpH−1 over the pH 0.25–13 range. The NPs were electrochemically placed on the planar gold substrate by low current deposition in combination with high voltage oxidation. The merits offered by this elaborated pH microsensor include fast response time, high sensitivity, reasonable selectivity, simple fabrication, long lifetime and the feasibility of miniaturization and integration.

A new thin film pH microsensor, nanoparticles β-PbO2, was elaborated, it revealed excellent potentiometric response characteristics compared to other non-glass pH electrodes. The sensitive layer coat was deposited using low current deposition/high voltage oxidation new approach

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amadelli R, Velichenko AB (2001) Lead dioxide electrodes for high potential anodic processes. J Serb Chem Soc 66:835–845

    CAS  Google Scholar 

  2. Bu-ming C, Zhong-cheng G, Xian-wan Y, Yuan-dong C (2010) Morphology of alpha-lead dioxide electrodeposited on aluminum substrate electrode. Trans Nonferrous Metals Soc China 20:97–103

    Article  Google Scholar 

  3. Karami H, Alipour M (2009) Synthesis of lead dioxide nanoparticles by the pulsed current electrochemical method. Int J Electrochem Sci 4:1511–1527

    CAS  Google Scholar 

  4. Razmi H, Heidari H, Habibi E (2008) pH-sensing properties of PbO2 thin film electrodeposited on carbon ceramic electrode. J Solid State Electrochem 12:1579–1587

    Article  CAS  Google Scholar 

  5. Mohd Y, Pletcher D (2006) The fabrication of lead dioxide layers on a titanium substrate. Electrochim Acta 52:786–793

    Article  CAS  Google Scholar 

  6. Ghasemi S, Mousavi MF, Shamsipur M (2007) Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone: a morphological study. Electrochim Acta 53:459–467

    Article  CAS  Google Scholar 

  7. Mehdinia A, Mousavi MF, Shamsipur M (2006) Nano-structured lead dioxide as a novel stationary phase for solid-phase microextraction. J Chromatogr A 1134:24–31

    Article  CAS  Google Scholar 

  8. Djerdj I, Arcon D, Jaglicic Z, Niederberger M (2008) Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J Solid State Electrochem 181:1571–1581

    Article  CAS  Google Scholar 

  9. Tso C, Zhung C, Shih Y, Tseng Y, Wu S, Doong R (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133

    Article  CAS  Google Scholar 

  10. Laurent S, Mahmoudi M (2011) Super paramagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidemiol Genet 2:367–390

    CAS  Google Scholar 

  11. Cao M, Hu C, Peng G, Qi Y, Wang E (2003) Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods. J Am Chem Soc 125:4982–4983

    Article  CAS  Google Scholar 

  12. Ghasemi S, Mousavi MF, Shamsiur M, Karami H (2008) Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason Sonochem 15:448–455

    Article  CAS  Google Scholar 

  13. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical analysis of some toxic metals by ion selective electrodes. Crit Rev Anal Chem 41:282–313

    Article  CAS  Google Scholar 

  14. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. Mol Liq 177:114–118

    Article  CAS  Google Scholar 

  15. Natedungta W, Prissanaroon-Ouajai W (2010) All-solid-state pH sensor based on conducting polymer. Adv Mater Res 94:591–594

    Article  Google Scholar 

  16. Korostynska O, Arshak K, Gill E, Arshak A (2007) Review on state-of-the-art in polymer based pH sensors. Sensors 7:3027–3042

    Article  CAS  Google Scholar 

  17. Gupta N, Sharma S, Mir IA, Kumar D (2006) Advances in sensors based on conducting polymers. J Sci Ind Res 65:549–557

    CAS  Google Scholar 

  18. Pankaj K, Kumar SH, Sukhjeet K (2012) Conducting polymer based potentiometric sensors. Res J Chem Environ 16:125–133

    Google Scholar 

  19. Silva GM, Lemos SG, Pocrifka LA, Marreto PD, Rosario AV, Pereira EC (2008) Development of low-cost metal oxide pH electrodes based on the polymeric precursor method. Anal Chim Acta 616:36–41

    Article  Google Scholar 

  20. Eftekhari A (2003) pH sensor based on deposited film of lead oxide on aluminum substrate electrode. Sensors Actuators B 88:234–238

    Article  CAS  Google Scholar 

  21. Liao Y, Chou J (2009) Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method. Mater Chem Phys 114:542–548

    Article  CAS  Google Scholar 

  22. Pan C, Chou J, Sun T, Hsiung S (2005) Development of the tin oxide pH electrode by the sputtering method. Sensors Actuators B 108:863–869

    Article  CAS  Google Scholar 

  23. Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors: a review. Anal Chem 86:15–2

    Article  CAS  Google Scholar 

  24. Ferrari L, Rovati L, Fabbri P, Pilati F (2013) Disposable fluorescence optical pH sensor for near neutral solutions. Sensors 13:484–499

    Article  CAS  Google Scholar 

  25. Shao L, Yin M, Tam H, Albert J (2013) Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings. Sensors 13:1425–1434

    Article  CAS  Google Scholar 

  26. Schyrra B, Pasche S, Scolan E, Ischera R, Ferrario D, Porchet J, Voirin G (2014) Development of a polymer optical fiber pH sensor for on-body monitoring application. Sensors Actuators B 194:238–248

    Article  Google Scholar 

  27. Wong WC, Chan CC, Hu P, Chan JR, Low YT, Dong X, Leong KC (2014) Miniature pH optical fiber sensor based on waist-enlarged bitaper and mode excitation. Sensors Actuators B 191:579–585

    Article  CAS  Google Scholar 

  28. Arida HA, Kloock JP, Schöning MJ (2006) Novel organic membrane- based thin-film microsensors for the determination of heavy metal cations. Sensors 6:435–444

    Article  CAS  Google Scholar 

  29. Arida H, Turek M, Rolka D, Schöning MJ (2009) A novel thin-film copper array based on an organic/inorganic sensor hybrid: Microfabrication, potentiometric characterization and flow-injection analysis application. Electroanl 21(10):1145–1152

    Article  CAS  Google Scholar 

  30. Arida HA, Al-Hajry A, Maghrabi IA (2014) A novel solid-state copper (II) thin-film micro-sensor based on organic membrane and titanium dioxide nano composites. Int J Electrochem Sci 9:426–434

    Google Scholar 

  31. Gibson FD (1960) Inert lead dioxide anode and process of production US Patent 2,945,791

  32. Gibson FD, Halker BB, Thayer RL (1969) Electrodeposition of lead dioxide. US Patent 3(463):707

    Google Scholar 

  33. Rhees RC, Halker BB (1977) An anode comprising a substrate have deposit of lead dioxide containing bismuth and process of for preparing the anode. US Patent 4:038,170

    Google Scholar 

  34. Schmidt FJ, Betz JF (1979) Amorphous lead dioxide photovoltaic generator. US Patent 4:173,497

    Google Scholar 

  35. Peper S, Gonczy C (2011) Potentiometric response characteristics of membrane-based cs+-selective electrodes containing ionophore-functionalized polymeric microspheres. Int J Electrochem 1:1–8

    Article  Google Scholar 

  36. Choi WH, Papautsky I (2011) Fabrication of a needle-type pH sensor by selective electrodeposition. J Micro/Nanolith MEMS MOEMS 10(2):20501–20503

    Article  Google Scholar 

  37. Betelu S, Polychronopoulou K, Rebholz C, Ignatiadis I (2011) Novel CeO2-based screen-printed potentiometric electrodes for pH monitoring. Talanta 87:126–135

    Article  CAS  Google Scholar 

  38. Liao YH, Chou JC (2008) Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system. Sensors Actuators B 128:603–612

    Article  CAS  Google Scholar 

  39. Das A, Das A, Chang LB, Lai CS, Lin RM, Chu FC, Lin YH, Chow L, Jeng MJ (2013) GaN Thin film based light addressable potentiometric sensor for pH sensing application. Appl Phys Express 6:36601–36603

    Article  Google Scholar 

  40. Marxer SM, Schoenfisch MH (2005) Sol–gel derived potentiometric pH sensors. Anal Chem 77(3):848–853

    Article  CAS  Google Scholar 

  41. Ouajai WP, Pigram PJ, Sirivat A (2008) Potentiometric responses of functionalized polypyrrole based pH sensors. J Metal Mater Miner 18(2):23–26

    Google Scholar 

  42. Teixeira MFS, Ramos LA, Neves EA, Cavalheiro ETG (2002) A Solid Fe2O3 based carbon-epoxy electrode for potentiometric measurements of pH. J Anal Chem 57:826–831

Download references

Acknowledgments

Author would like to acknowledge the support of the Ministry of Higher Education, Kingdom of Saudi Arabia for this research through a grant (PCSED-016-12) under the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Arida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arida, H. Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles. Microchim Acta 182, 149–156 (2015). https://doi.org/10.1007/s00604-014-1311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1311-9

Keywords

Navigation