, Volume 181, Issue 9-10, pp 957-965
Date: 14 Feb 2014

Graphene oxide functionalized magnetic nanoparticles as adsorbents for removal of phthalate esters

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We show that magnetic nanoparticles can be functionalized with graphene oxide (GO-MNPs) in two reaction steps, and that such nanoparticles can be used as adsorbents for the removal of phthalate esters (PAEs) from water samples. The GO-MNPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, and vibrating sample magnetometer. The impacts of contact time, sample pH, ionic strength and sample volume on the adsorption process were investigated. The maximum adsorption capacity for diethyl phthalate was calculated to be 8.71 mg g−1 according to the Langmuir adsorption isotherm. The adsorption efficiency was tested by removal of PAEs. More than 99 % of the total quantity of PAEs (0.12 mg L−1) in 500 mL real water samples can be removed when GO-MNPs (275–330 mg) were used as an adsorbent. In addition, other species (estriol and fluorene) containing benzene rings were also almost completely removed with the PAEs using GO-MNPs, indicating that GO-MNPs are suitable for the removal of the species containing π-electron system through π-π interactions.

Fig. a

Magnetic nanoparticles can be functionalized with graphene oxide (GO-MNPs) in two reaction steps, and that such nanoparticles can be used as adsorbents for the removal of phthalate esters from water samples.