Skip to main content
Log in

Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters.

New triazole acetamide functionalized gold nanoparticles (ATTP-AuNPs) for sensitive and selective colorimetric detection of I were developed. ATTP-AuNPs showed excellent selectivity toward I due to the interaction between the amide groups of ATTP and I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460

    Article  CAS  Google Scholar 

  2. Rokita SE, Adler JM, McTamney PM, Watson JA (2010) Efficient use and recycling of the micronutrient iodide in mammals. Biochimie 92:1227–1235

    Article  CAS  Google Scholar 

  3. Pearce EN (2012) Iodine-induced thyroid dysfunction: comment on “association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism”. Arch Intern Med 172:159–161

    Article  CAS  Google Scholar 

  4. Hao FP, Haddad PR, Ruther T (2008) IC determination of halide impurities in ionic liquids. Chromatographia 67:495–498

    Article  CAS  Google Scholar 

  5. Malongo TK, Patris S, Macours P, Cotton F, Nsangu J, Kauffmann J (2008) Highly sensitive determination of iodide by ion chromatography with amperometric detection at a silver-based carbon paste electrode. Talanta 76:540–547

    Article  CAS  Google Scholar 

  6. Zahran EM, Hua Y, Lee S, Flood AH, Bachas LG (2011) Ion-selective electrodes based on a pyridyl-containing triazolophane: altering halide selectivity by combining dipole-promoted cooperativity with hydrogen bonding. Anal Chem 83:3455–3461

    Article  CAS  Google Scholar 

  7. Chiu MH, Cheng WL, Muthuraman G, Hsu CT, Chung HH, Zen JM (2009) A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples. Biosens Bioelectron 24:3008–3013

    Article  CAS  Google Scholar 

  8. Qin X, Wang HC, Miao ZY, Wang XS, Fang YX, Chen Q, Shao XG (2011) Synthesis of silver nanowires and their applications in the electrochemical detection of halide. Talanta 84:673–678

    Article  CAS  Google Scholar 

  9. Jung HJ, Singh N, Lee DY, Jang DO (2010) Single sensor for multiple analytes: chromogenic detection of I and fluorescent detection of Fe3+. Tetrahedron Lett 51:3962–3965

    Article  CAS  Google Scholar 

  10. Zhang J, Xu XW, Yang C, Yang F, Yang X (2011) Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal Chem 83:3911–3917

    Article  CAS  Google Scholar 

  11. Kumar A, Chhatra RK, Pandey PS (2010) Synthesis of click bile acid polymers and their application in stabilization of silver nanoparticles showing iodide sensing property. Org Lett 12:24–27

    Article  CAS  Google Scholar 

  12. Wang X, Zhang C, Feng L, Zhang L (2011) Screening iodide anion with selective fluorescent chemosensor. Sensors Actuators B 156:463–466

    Article  CAS  Google Scholar 

  13. Rathikrishnan KR, Indirapriyadharshini VK, Ramakrishna S, Murugan R (2011) 4,7-Diaryl indole-based fluorescent chemosensor for iodide ions. Tetrahedron 67:4025–4030

    Article  CAS  Google Scholar 

  14. Lee DY, Singh N, Kim MJ, Jang DO (2011) Chromogenic and fluorescent recognition of iodide with a benzimidazole-based tripodal receptor. Org Lett 12:3024–3027

    Article  CAS  Google Scholar 

  15. Zhang M, Ye BC (2012) A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem Commun 48:3647–3649

    Article  CAS  Google Scholar 

  16. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  17. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  18. Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433

    Article  CAS  Google Scholar 

  19. Liang G, Wang L, Zhang H, Han Z, Wu X (2012) A colorimetric probe for the rapid and selective determination of mercury(II) based on the disassembly of gold nanorods. Microchim Acta 179:345–350

    Article  CAS  Google Scholar 

  20. Chansuvarn W, Imyim A (2012) Visual and colorimetric detection of mercury(II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim Acta 176:57–64

    Article  CAS  Google Scholar 

  21. Chen Y, Lee I, Sung Y, Wu S (2013) Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sensors Actuators B 188:354–359

    Article  CAS  Google Scholar 

  22. Liu B, Tan H, Chen Y (2013) Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim Acta 180:331–339

    Article  CAS  Google Scholar 

  23. Wei S, Hsu P, Lee Y, Lin Y, Huang C (2012) Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl Mater Interfaces 4:2652–2658

    Article  CAS  Google Scholar 

  24. Gu J, Lin Y, Chia Y, Lin H, Huang S (2013) Colorimetric and bare-eye determination of fluoride using gold nanoparticle agglomeration probes. Microchim Acta 180:801–806

    Article  CAS  Google Scholar 

  25. Wang Y, Zhu H, Yang X, Dou Y, Liu Z (2013) New colorimetric and fluorometric sensing strategy based on the anisotropic growth of histidine-mediated synthesis of gold nanoclusters for iodide-specific detection. Analyst 138:2085–2089

    Article  CAS  Google Scholar 

  26. Garin D, Oukhatar F, Mahon AB, Try AC, Dubois-Dauphin M, Laferia FM, Demeunynck M, Sallanon MM, Chierici S (2011) Proflavine derivatives as fluorescent imaging agents of amyloid deposits. Bioorg Med Chem Lett 21:2203–2206

    Article  CAS  Google Scholar 

  27. Dyke JM, Levita G, Morris A, Ogden JS, Dias AA, Algarra M, Santos JP, Costa ML, Rodrigues P, Barros MT (2004) A study of the thermal decomposition of 2-azidoacetamide by ultraviolet photoelectron spectroscopy and matrix-isolation infrared spectroscopy: identification of the imine intermediate H2NCOCHNH. J Phys Chem A 108:5299–5307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Science Council (ROC) and National Chiao Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Pao Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Synthesis of 5-(1,2-dithiolan-3-yl)-N-(prop-2-yn-1-yl)pentanamide (TP), azidoacetamide and ATTP, the calibration curve of ATTP-AuNPs in water and the calibration curve for the detection of I by ATTP-AuNPs. (DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, IL., Sung, YM., Wu, CH. et al. Colorimetric sensing of iodide based on triazole-acetamide functionalized gold nanoparticles. Microchim Acta 181, 573–579 (2014). https://doi.org/10.1007/s00604-013-1150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1150-0

Keywords

Navigation