Skip to main content
Log in

Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The direct electrocatalytic reduction of hydrogen peroxide in alkaline medium at a carbon ionic liquid electrode modified with copper oxide nanoparticles was investigated. The electrode was prepared by mixing graphite particles, ionic liquid (n-octylpyridium hexafluorophosphate) and copper oxide nanoparticles. Unlike the film-modified electrode, the fabrication of this electrode is simple and highly reproducible. The combination of the good conductivity of the ionic liquid and the high catalytic activity of the nanoparticles resulted in an electrode with attractive properties for the determination of hydrogen peroxide. The concentration of NaOH and the loading of copper oxide nanoparticles were optimized. The linear range for the determination of hydrogen peroxide is from 1.0 μM to 2.5 mM, the detection limit is 0.5 μM. High stability, sensitivity, selectivity and reproducibility, fast response, the ease of preparation, and surface renewal made the electrode well suitable for the determination of hydrogen peroxide in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ping JF, Mao XL, Fan K, Li DY, Ru SP, Wu J, Ying YB (2010) A Prussian blue-based amperometric sensor for the determination of hydrogen peroxide residues in milk. Ionics 16:523

    Article  CAS  Google Scholar 

  2. Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal Chem 72:1720

    Article  CAS  Google Scholar 

  3. Ricci F, Palleschi G (2005) Sensors and biosensors preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389

    Article  CAS  Google Scholar 

  4. Šljukić B, Banks CE, Crossley A, Compton RG (2007) Copper Oxide—Graphite Composite Electrodes: Application to Nitrite Sensing. Electroanalysis 19:79

    Article  Google Scholar 

  5. Zang J, Chang ML, Cui X, Wang J, Sun X, Dong H, Sun CQ (2007) Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis 19:1008

    Article  CAS  Google Scholar 

  6. Sun W, Li XQ, Qin P, Jiao K (2009) Electrodeposition of Co Nanoparticles on the Carbon Ionic Liquid Electrode as a Platform for Myoglobin Electrochemical Biosensor. J Phys Chem C 113:11294

    Article  CAS  Google Scholar 

  7. Wang X, Li Y (2002) Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires. J Am Chem Soc 124:2880

    Article  CAS  Google Scholar 

  8. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22:3146

    Article  CAS  Google Scholar 

  9. Selvaraju T, Ramaraj R (2009) Electrocatalytic reduction of hydrogen peroxide at nanostructured copper modified electrode. J Appl Electrochem 39:321

    Article  CAS  Google Scholar 

  10. Batchelor-McAuley C, Du Y, Wildgoose GG, Compton RG (2008) The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sens Actuators B Chem 135:230

    Article  Google Scholar 

  11. Pitcher MW (2006) MATERIALS SCIENCE: There's Still Plenty of Room at the Bottom. Science 313:300

    Article  CAS  Google Scholar 

  12. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168

    Article  CAS  Google Scholar 

  13. Wang X, Hu CG, Liu H, Du GJ, He XS, Xi Y (2010) Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens Actuators B Chem 144:220

    Article  Google Scholar 

  14. Paixao RLC, Bertotti M (2004) Development of a breath alcohol sensor using a copper electrode in an alkaline medium. J Electroanal Chem 571:101

    Article  CAS  Google Scholar 

  15. Li M, Feng CP, Zhang ZY, Shen ZL, Sugiura N (2009) Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochem Commun 11:1853

    Article  CAS  Google Scholar 

  16. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J Electroanal Chem 612:157

    Article  CAS  Google Scholar 

  17. Le WZ, Liu YQ (2009) Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating potential cycling method and its characterization. Sens Actuators B Chem 141:147

    Article  Google Scholar 

  18. Zhang XJ, Wang GF, Liu XW, Wu JJ, Li M, Gu J, Liu H, Fang B (2008) Different CuO Nanostructures: Synthesis, Characterization. Applications for Glucose. J Phys Chem C 112:16845

    Article  CAS  Google Scholar 

  19. Jia WZ, Guo M, Zheng Z, Yu T, Wang Y, Rodriguez EG, Lei Y (2008) Vertically Aligned CuO Nanowires Based Electrode for Amperometric Detection of Hydrogen Peroxide. Electroanalysis 20:2153

    Article  CAS  Google Scholar 

  20. Zhuang RR, Jian FF (2010) Electrocatalysis for the hydrogen peroxide and nitrite at carbon paste electrode modified with a new zinc complex of 1-pentyl-1H-benzo[d][1, 2, 3]triazole. J Solid State Electrochem 14:747

    Article  CAS  Google Scholar 

  21. Šljukić B, Banks CE, Crossley A, Compton RG (2006) Iron(III) Oxide Graphite Composite Electrodes: Application to the Electroanalytical Detection of Hydrazine and Hydrogen Peroxide. Electroanalysis 18:1757

    Article  Google Scholar 

  22. Šljukić B, Banks CE, Crossley A, Compton RG (2007) Lead(IV) oxide–graphite composite electrodes: Application to sensing of ammonia, nitrite and phenols. Anal Chim Acta 587:240

    Article  Google Scholar 

  23. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156

    Article  CAS  Google Scholar 

  24. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126

    Article  CAS  Google Scholar 

  25. Maleki H, Safavi A, Tajabadi F (2006) High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder. Anal Chem 78:3820

    Article  CAS  Google Scholar 

  26. Liu HT, He P, Li ZY, Sun CY, Shi LH, Liu Y, Zhu GY, Li JH (2005) An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7:1357

    Article  CAS  Google Scholar 

  27. Sun W, Gao RF, Jiao K (2007) Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO3 Film on a New Ionic Liquid BPPF6 Modified Carbon Paste Electrode. J Phys Chem B 111:4560

    Article  CAS  Google Scholar 

  28. Wang Q, Yun YB, Zheng JB (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:153

    Article  CAS  Google Scholar 

  29. Du P, Liu SN, Wu P, Cai CX (2007) Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim Acta 52:6534

    Article  CAS  Google Scholar 

  30. Zhu WL, Zhou Y, Zhang JR (2009) Direct electrochemistry and electrocatalysis of myoglobin based on silica-coated gold nanorods/room temperature ionic liquid/silica sol-gel composite film. Talanta 80:224

    Article  CAS  Google Scholar 

  31. Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Lett 4:191

    Article  CAS  Google Scholar 

  32. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224

    Article  CAS  Google Scholar 

  33. Hrbac J, Halouzka V, Zboril R, Papadopoulos K, Triantis T (2007) Carbon Electrodes Modified by Nanoscopic Iron(III) Oxides to Assemble Chemical Sensors for the Hydrogen Peroxide Amperometric Detection. Electroanalysis 19:1850

    Article  CAS  Google Scholar 

  34. Garjonyte R, Malinauskas A (1998) Amperometric sensor for hydrogen peroxide, based on Cu2O or CuO modified carbon paste electrodes. Fresenius J Anal Chem 360:122

    Article  Google Scholar 

  35. Lin MS, Leu HJ (2005) A Fe3O4-Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide. Electroanalysis 17:2068

    Article  CAS  Google Scholar 

  36. Nien P, Tung T, Ho K (2006) Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3, 4-ethylenedioxythiophene) Film. Electroanalysis 18:1408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University of China (No. NCET-07-0725), the Key Scientific Project of China (No. 2009ZX08012-004B) and the Key Scientific Project of Zhejiang Province of China (No. 2008C14077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, J., Ru, S., Fan, K. et al. Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim Acta 171, 117–123 (2010). https://doi.org/10.1007/s00604-010-0420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0420-3

Keywords

Navigation