Skip to main content
Log in

A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes—chitosan composite film modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive amperometric sensor has been constructed for the determination of hydrogen peroxide (HP). It is based on a glassy carbon electrode modified with a composite made from thionin, EDTA, multiwalled carbon nanotubes, and chitosan. Thionin was covalently immobilized on the surface of the electrode. The sensor exhibits a powerful electrocatalytic activity for the reduction of HP. The amperometric signal is proportional to the concentration of HP in the range from 0.2 μM to 85.0 μM, with a detection limit of 0.065 μM. The sensor displays excellent selectivity, good reproducibility and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hurdis EC, Romeyn JH (1954) Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 26:320

    Article  CAS  Google Scholar 

  2. Matsubara C, Kawamoto N, Takamura K (1992) Oxo[5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781

    Article  CAS  Google Scholar 

  3. Hanaoka S, Lin JM, Yamada M (2001) Chemiluminescent flow sensor for HP based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426:57

    Article  CAS  Google Scholar 

  4. Nakashima K, Maki K, Kawaguchi S, Tsukamoto S, Kazuhiro I (1991) Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2, 4, 6, 8-tetrathiomorpholinopyrimido[5, 4-d]-pyrimidine as a fluorescent component. Anal Sci 7:709

    Article  CAS  Google Scholar 

  5. Wu YC, Thangamuthu R, Chen SM (2009) A highly selective amperometric hydrogen peroxide sensor based on silicomolybdate-doped-glutaraldehyde-cross-linked poly-l-lysine film modified glassy carbon electrode. Electroanalysis 2:210

    Article  Google Scholar 

  6. Liu Y, Chu ZY, Jin WQ (2009) A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochem Commun 11:484

    Article  CAS  Google Scholar 

  7. Shobha Jeykumari DR, Ramaprabhu S, Narayanan SS (2007) A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 45:1340

    Article  Google Scholar 

  8. Shi AW, Qu FL, Yang MH, Shen GL, Yu RQ (2008) Amperometric H2O2 biosensor based on poly-thionine nanowire / HRP / nano-Au-modified glassy carbon electrode. Sens Actuators B 129:779

    Article  Google Scholar 

  9. Gao FX, Yuan R, Chai YQ, Chen SH, Cao SR, Tang MY (2007) Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode. J Biochem Biophys Methods 70:407

    Article  CAS  Google Scholar 

  10. Wu S, Zhao HT, Ju HX, Shi CG, Zhao JW (2006) Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197

    Article  CAS  Google Scholar 

  11. Wang SF, Xie F, Liu GD (2009) Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes. Talanta 77:1343

    Article  CAS  Google Scholar 

  12. Song YH, Wang L, Ren CB, Zhu GY, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sens Actuators B 114:1001

    Article  Google Scholar 

  13. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408

    Article  CAS  Google Scholar 

  14. Wang L, Wang EK (2004) Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem Commun 6:49

    Article  CAS  Google Scholar 

  15. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem 516:119

    Article  CAS  Google Scholar 

  16. Cui K, Song YH, Yao Y, Huang ZZ, Wang L (2008) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 10:663

    Article  CAS  Google Scholar 

  17. Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274

    Article  CAS  Google Scholar 

  18. You CP, Li X, Zhang S, Kong JL, Zhao DY, Liu BH (2009) Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Microchim Acta 167:109

    Article  CAS  Google Scholar 

  19. Fiorito PA, Cordoba de Torresi SI (2005) Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors. J Electroanal Chem 581:31

    Article  CAS  Google Scholar 

  20. Wang XY, Gu HF, Yin F, Tu YF (2009) A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens Bioelectron 24:1527

    Article  CAS  Google Scholar 

  21. Liu Y, Chu ZY, Jin WQ (2009) A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochem Commun 11:484

    Article  CAS  Google Scholar 

  22. Xiang CL, Zou YJ, Sun LX, Xu F (2007) Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubes-modified electrode. Talanta 74:206

    Article  CAS  Google Scholar 

  23. Cui XL, Li ZZ, Yang YC, Zhang W, Wang QF (2008) Low-potential sensitive hydrogen peroxide detection based on nanotubular TiO2 and platinum composite electrode. Electroanalysis 20:970

    Article  CAS  Google Scholar 

  24. Chen J, Zhang WD, Ye JS (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10:1268

    Article  CAS  Google Scholar 

  25. Jiang LC, Zhang WD (2009) Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis 8:988

    Article  Google Scholar 

  26. Zhang WD (2006) Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays. Nanotechnology 17:1036

    Article  CAS  Google Scholar 

  27. Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56

    Article  CAS  Google Scholar 

  28. Lordi V, Yao N, Wei J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13:733

    Article  CAS  Google Scholar 

  29. Tu XM, Xie QJ, Huang Z, Jia X, Ye M (2008) Electrocatalytic oxidation and sensitive determination L-cysteine at a poly(aminoquinone)-carbon nanotubes of hybrid film modified glassy carbon electrode. Microchim Acta 162:219

    Article  CAS  Google Scholar 

  30. Wu FH, Zhao GC, Wei XW, Yang ZS (2004) Electrocatalysis of tryptophan at multi-Walled carbon nanotube modified electrode. Microchim Acta 144:243

    Article  CAS  Google Scholar 

  31. Sun YX, Fei JJ, Hou J, Zhang Q, Liu YL, Hu BN (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373

    Article  CAS  Google Scholar 

  32. Lin Y, Wang RX, Li XM, Jiang LP, Lu GH (2005) Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem Commun 7:597

    Article  Google Scholar 

  33. Fang B, Zhang N, Zhang W, Gu AX, Wang GF (2009) A novel hydrogen peroxide sensor based on multiwalled carbon nanotubes/poly(pyrocatechol violet)-modified glassy carbon electrode. J Appl Polym Sci 12:3488

    Article  Google Scholar 

  34. Jiang ZY, Yu YX, Wu H (2006) Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. J Membr Sci 280:876

    Article  CAS  Google Scholar 

  35. Yang WW, Zhou H, Sun CQ (2007) Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol Rapid Commun 28:265

    Article  CAS  Google Scholar 

  36. Wu S, Chen Y, Zeng F, Gong S, Tong Z (2006) Electron transfer in ferrocene-containing functionalized chitosan and its electrocatalytic decomposition of peroxide. Macromolecules 39:6796

    Article  CAS  Google Scholar 

  37. Wu ZG, Feng W, Feng YY, Liu Q, Xu XH, Sekino T, Fujii A, Ozaki M (2007) Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45:1212

    Article  CAS  Google Scholar 

  38. Liu Y, Wang MK, Zhao F, Xu ZA, Dong SJ (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984

    Article  CAS  Google Scholar 

  39. Qian L, Yang XR (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68:721

    Article  CAS  Google Scholar 

  40. Zhao K, Song HY, Zhuang SQ, Dai LM, He PG, Fang YZ (2007) Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochem Commun 9:65

    Article  CAS  Google Scholar 

  41. Yang R, Ruan CM, Dai WL, Deng JQ, Kong JL (1999) Electropolymerization of thionine is neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochim Acta 44:1585

    Article  CAS  Google Scholar 

  42. Lo PH, Kumar SA, Chen SM (2008) Amperometric determination of H2O2 at nano-TiO2/DNA/thionin nanocomposite modified electrode. Colloids Surf B Biointerfaces 66:266

    Article  CAS  Google Scholar 

  43. Dai Z, Chen J, Yang F, Ju HX (2005) Electrochemical sensor for immunoassay of carcinoembryonic antigen based on thionine monolayer modified gold electrode. Cancer Detect Prev 29:233

    Article  CAS  Google Scholar 

  44. Gao Q, Cui XQ, Yang F, Ma Y, Yang XR (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron 19:277

    Article  CAS  Google Scholar 

  45. Xu Y, Cai H, He PG, Fang YZ (2004) Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16:150

    Article  CAS  Google Scholar 

  46. Kafi AKM, Yin F, Shin HK, Kwon YS (2006) Hydrogen peroxide biosensor based on DNA–Hb modified gold electrode. Thin Solid Films 499:420

    Article  CAS  Google Scholar 

  47. Shan YP, Yang GC, Gong J, Zhang XL, Zhu LD, Qu LY (2008) Prussian blue nanoparticles potentiostatically electrodeposited on indium tin oxide/chitosan nanofibers electrode and their electrocatalysis towards hydrogen peroxide. Electrochim Acta 53:7751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China (No. 20871089), the Natural Science Research Project of Education Department of Anhui Province (No. KJ2010ZD09, KJ2010B227) and the Foundation of Anhui Provincial Education Department for Outstanding Young Talents in University (No. 2009SQRZ172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keying Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Zhang, L., Xu, J. et al. A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes—chitosan composite film modified electrode. Microchim Acta 171, 139–144 (2010). https://doi.org/10.1007/s00604-010-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0409-y

Keywords

Navigation