Skip to main content
Log in

Electrochemical study of the interaction between dsDNA and copper(II) using carbon paste and hanging mercury drop electrodes

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The interaction of copper(II) with double-stranded (ds) calf thymus DNA was studied in solution as well as at the electrode surface by means of differential pulse stripping voltammetry and alternating current voltammetry, using carbon paste electrode and hanging mercury drop electrode, respectively. As a result of the interaction of Cu(II) with dsDNA, the characteristic peak of dsDNA, due to the oxidation of guanine, increased while the oxidation peak of adenine decreased, probably due to the formation of a purine base residue-Cu(II) complex (dsDNA-Cu(II) complex). The interaction of copper(II) with DNA is shown to be time-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Palecek E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56:809

    Article  CAS  Google Scholar 

  2. Pang DW, Qi YP, Wang ZL, Cheng JK, Wang JW (1995) Electrochemical oxidation of DNA at a gold microelectrode. Electroanalysis 7:774

    CAS  Google Scholar 

  3. Armistead PM, Thorp HH (2001) Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes. Anal Chem 73:558

    CAS  Google Scholar 

  4. Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125:5

    CAS  Google Scholar 

  5. Palecek E, Fojta M (1994) Differential pulse voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components. Anal Chem 66:1566

    Article  CAS  Google Scholar 

  6. Ontko AC, Armistead PM, Kircus SR, Thorp HH (1999) Electrochemical detection of single-stranded DNA using polymer-modified electrodes. Inorg Chem 38:1842

    Article  CAS  Google Scholar 

  7. Ferapontova EE, Dominguez E (2003) Direct electrochemical oxidation of DNA on polycrystalline gold electrodes. Electroanalysis 15:629

    Article  CAS  Google Scholar 

  8. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192

    Article  CAS  Google Scholar 

  9. Hason S, Jelen F, Fojt L, Vetterl V (2005) Determination of picogram quantities of oligodeoxynucleotides by stripping voltammetry at mercury modified graphite electrode surfaces. J Electroanal Chem 577:263

    Article  CAS  Google Scholar 

  10. Erdem A, Meric B, Kerman K, Dalbasti T, Ozsoz M (1999) Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanalysis 11:1372

    Article  CAS  Google Scholar 

  11. Erdem A, Kerman K, Meric B, Ozsoz M (2001) Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis 13:219

    CAS  Google Scholar 

  12. Ozsoz M, Erdem A, Kara P, Kerman K, Ozkan D (2003) Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based on guanine signal. Electroanalysis 15:613

    CAS  Google Scholar 

  13. Theil EC, Raymond KN (1994) Transition-metal storage, transport, and biomineralization. In: Bertini I, Gray HB, Lippard SJ, Selverstone VJ (eds) Bioinorganic Chemistry. University Science Books, Sausalito

    Google Scholar 

  14. Theophanides T, Anastassopoulou J (2002) Copper and carcinogenesis. Crit Rev Oncol/Hematol 42:57

    CAS  Google Scholar 

  15. Cervantes-Cervantes MP, Calderon-Salinas JV, Albores A, Munoz-Sanchez JL (2005) Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res 103:229

    CAS  Google Scholar 

  16. Labuda J, Buková M, Vaníková M, Mattusch J, Wennrich R (1999) Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA. Electroanalysis 11:101

    Article  CAS  Google Scholar 

  17. Zhang N, Zhang X (2007) Voltammetric study of the interaction of the ofloxacin–copper complex with DNA, and its analytical application. Microchim Acta 159:65

    Article  CAS  Google Scholar 

  18. Yang ZS, Yu JS, Chen HY (2002) Influence of several factors on potential-modulated DNA cleavage by the Cu(en)2 2+ and Cu(EDTA)2− complexes. J Electroanal Chem 530:68

    CAS  Google Scholar 

  19. Farias PAM, Wagener ALR, Bastos MBR, Silva AT, Castro AA (2003) Cathodic adsorptive stripping voltammetric behaviour of guanine in the presence of copper at the static mercury drop electrode. Talanta 61:829

    Article  CAS  Google Scholar 

  20. Farias PAM, Wagener ALR, Castro AA (2001) Ultratrace determination of adenine in the presence of copper by adsorptive stripping voltammetry. Talanta 55:281

    Article  CAS  Google Scholar 

  21. Fojta M, Havran L, Kubicarova T, Palecek E (2002) Electrode potential-controlled DNA damage in the presence of copper ions and their complexes. Bioelectrochemistry 55:25

    Article  CAS  Google Scholar 

  22. Jelen F, Yosypchuk B, Kourilova A, Novotny L, Palecek E (2002) Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal Chem 74:4788

    Article  CAS  Google Scholar 

  23. Palaska P, Aritzoglou E, Girousi S (2007) Sensitive detection of cyclophosphamide using DNA-modified carbon paste, pencil graphite and hanging mercury drop electrodes. Talanta 72:1199

    Article  CAS  Google Scholar 

  24. Rice ME, Galus Z, Adams RN (1983) Graphite paste electrodes: Effects of paste composition and surface states on electron-transfer rates. J Electroanal Chem 143:89

    Article  CAS  Google Scholar 

  25. Palecek E, Fojta M, Tomschik M, Wang J (1998) Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 13:621

    Article  CAS  Google Scholar 

  26. Palecek E, Postbieglova I (1986) Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J Electroanal Chem 214:359

    Article  CAS  Google Scholar 

  27. Karadeniz H, Gulmez B, Sahinci F, Erdem A, Kaya GI, Unver N, Kivcak B, Ozsoz M (2003) Disposable electrochemical biosensor for the detection of the interaction between DNA and lycorine based on guanine and adenine signals. J Pharm Biomed Anal 33:295

    CAS  Google Scholar 

  28. Gherghi ICh, Girousi STh, Voulgaropoulos A, Tsitouridou RT (2004) Adsorptive transfer stripping voltammetry applied to the study of the interaction between DNA and actinomycin D. Int J Env Anal Chem 84:865

    CAS  Google Scholar 

  29. Teijeiro C, Perez P, Marin D, Palecek E (1995) Cyclic voltammetry of mitomycin C and DNA. Bioelectrochem Bioenerg 38:77

    CAS  Google Scholar 

  30. Palecek E (1996) From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis 8:7

    CAS  Google Scholar 

  31. Jelen F, Vetterl V, Belusa P, Hason S (2000) Adsorptive stripping analysis of DNA with admittance detection. Electroanalysis 12:987

    CAS  Google Scholar 

  32. Sorokin VA, Valeev VA, Gladchenko GO, Sysa IV, Blagoi YP, Volchok IV (1996) Interaction of bivalent copper, nickel, manganese ions with native DNA and its monomers. J Inorg Biochem 63:79

    CAS  Google Scholar 

Download references

Acknowledgement

Z. Stanic wish to thank the Ministry of Science of the Republic of Serbia, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Girousi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 45 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanić, Z., Girousi, S. Electrochemical study of the interaction between dsDNA and copper(II) using carbon paste and hanging mercury drop electrodes. Microchim Acta 164, 479–485 (2009). https://doi.org/10.1007/s00604-008-0083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0083-5

Keywords

Navigation