Skip to main content
Log in

Numerical Simulation of Heterogeneous Rock Using Discrete Element Model Based on Digital Image Processing

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from (Yoon 2012)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ammouche A, Breysse D, Hornain H, Didry O, Marchand J (2000) A new image analysis technique for the quantitative assessment of microcracks in cement-based materials. Cem Concr Res 30:25–35

    Article  Google Scholar 

  • Ammouche A, Riss J, Breysse D, Marchand J (2001) Image analysis for the automated study of microcracks in concrete. Cement Concr Compos 23:267–278

    Article  Google Scholar 

  • Chen S, Yue ZQ (2004) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957

    Article  Google Scholar 

  • Chen SJ, Zhu WC, Yu QL, Liu XG (2015) Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique. Rock Mech Rock Eng. doi:10.1007/s00603-015-0795-x

    Google Scholar 

  • Christianson M, Board M, Rigby D (2006) UDEC simulation of triaxial testing of lithophysal tuff. The 41st U.S. Symposium on Rock Mechanics (USRMS), June 17–21

  • Cundall PA (1980) UDEC—a generalized distinct element program for modelling jointed rock. Report PCAR-1-80, Peter Cundall Associates, European Research Office, US Army Corps of Engineers

  • Cundall PA, Hart RD (1993) Numerical modeling of discontinue. In: Hudson JA (ed) Comprehensive rock engineering, vol 2. Pergamon Press, Oxford

    Google Scholar 

  • Dinh QD (2011) Brazilian test on anisotropic rocks—laboratory experiment, numerical simulation and interpretation. PhD thesis, TU bergakademin Freiberg, Germany

  • Hadjigeorgiou J, Lemy F, Cote P, Maldague X (2003) An evaluation of image analysis algorithms for constructing discontinuity trace maps. Rock Mech Rock Eng 36(2):163–179

    Article  Google Scholar 

  • Itasca Consulting Group, Inc (2006) UDEC universal distinct element code–theory and background. Minneapolis, Minnesota

    Google Scholar 

  • Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39:409–427

    Article  Google Scholar 

  • Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modeling of brittle material failure. Int J Num Analyt Meth Geomech. doi:10.1002/nag.884

    Google Scholar 

  • Lan H, Martin CD, Hu B (2010) Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophysical Research 115:B01202

    Article  Google Scholar 

  • Li L, Tsui T, Lee PKK, Tham LG, Li T, Ge C (2002) Progressive cracking of granite plate under uniaxial compression. Chinese Journal Of Rock Mechanics And Engineering 21(7):940–947 (in Chinese)

    Google Scholar 

  • Liu HY, Roquete M, Kou SQ, Lindqvist PA (2004) Characterization of rock heterogeneity and numerical verification. Eng Geol 72(1–2):89–119

    Article  Google Scholar 

  • Norouzi S, Baghbanan A, Khani A (2013) Investigation of grain size effects on micro/macro-mechanical properties of intact rock using Voronoi element—discrete element method approach. particulate science and technology. An International Journal. doi:10.1080/02726351.2013.782929

    Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  • Tan X, Konietzky H, Frühwirt T, Dan DQ (2015) Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech Rock Eng 48(4):1341–1351

    Article  Google Scholar 

  • Tuğrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317

    Article  Google Scholar 

  • Yuan SC, Harrison JP (2005) Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks. Int J Rock Mech Min Sci 42(7–8):961–984

    Article  Google Scholar 

  • Yue ZQ, Morin I (1996) Digital image processing for aggregate orientation in asphalt concrete mixtures. Can J Civ Eng 23:479–489

    Article  Google Scholar 

  • Yue ZQ, Bekking W, Morin I (1995) Application of digital image processing to quantitative study of asphalt concrete microstructure. Transportation Research Record 1492, Transportation Research Board, National Research Council, Washington, DC, pp 53–60

  • Yue ZQ, Chen S, Tham LG (2002) Digital image processing based finite element method for rock mechanics. In: Lin YM, Tang CA, Feng XT, Wang SH, (eds). New development in rock mechanics and rock engineering. The proceedings of the second international conference, PR China, pp 609–615

  • Yue ZQ, Chen S, Tham LG (2003) Finite element modeling of geomaterials using digital image processing. Comput Geotech 30:375–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Konietzky, H. & Chen, W. Numerical Simulation of Heterogeneous Rock Using Discrete Element Model Based on Digital Image Processing. Rock Mech Rock Eng 49, 4957–4964 (2016). https://doi.org/10.1007/s00603-016-1030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1030-0

Keywords

Navigation