Skip to main content
Log in

Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The geo-mechanical properties of reservoirs, especially the morphology of the rock surface and the fracture properties of rocks, are of great importance in the modeling and simulation of hydraulic processes. To better understand these fundamental issues, five groups of mixed-mode fracture tests were conducted on sandstone using edge-cracked semi-circular bend specimens. Accordingly, the fracture loads, growth paths and fracture surfaces for different initial mixities of the mixed-mode loadings from pure mode I to pure mode II were then determined. A surface topography measurement for each rough fracture surface was conducted using a laser profilometer, and the fractal properties of these surfaces were then investigated. The fracture path evolution mechanism was also investigated via optical microscopy. Moreover, the mixed-mode fracture strength envelope and the crack propagation trajectories of sandstone were theoretically modeled using three widely accepted fracture criteria (i.e., the MTS, MSED and MERR criterions). The published test results in Hasanpour and Choupani (World Acad Sci Eng Tech 41:764–769, 2008) for limestone were also theoretically investigated to further examine the effectiveness of the above fracture criteria. However, none of these criteria could accurately predict the fracture envelopes of both sandstone and limestone. To better estimate the fracture strength of mixed-mode fractures, an empirical maximum tensile stress (EMTS) criterion was proposed and found to achieve good agreement with the test results. Finally, a uniformly pressurized fracture model was simulated for low pressurization rates using this criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Crack length

B :

Thickness of an SCB specimen

d :

Half-distance of two bottom supports of an SCB specimen

E :

Young’s modulus

f :

Coefficient of friction

F :

Applied load in an SCB 3PB test

F max :

Peak load in an SCB 3PB test

G :

Energy release rate

G c :

Critical energy release rate

K I :

Mode I stress intensity factor

K II :

Mode II stress intensity factor

K Ic :

Mode I fracture toughness

K IIc :

Mode II fracture toughness

k 1 :

=K I/K Ic

k 2 :

=K II/K IIc

M :

Mixity of a given mixed-mode loading

M 0 :

Initial loading mode mixity

p :

Pressure acting on the wellbore and the fracture surfaces

p i :

Pressure acting on the wellbore and the fracture surfaces for sub-step i

R :

Radius of an SCB specimen

r, θ :

Polar co-ordinates at the crack tip

r c :

Critical radius of the core region in the crack initiation direction

r Ic :

Critical radius of the core region in the initiation direction of a mode I crack

r IIc :

Radius of the core region in the initiation direction of a mode II crack

R w :

Radius of a wellbore

S :

Strain energy density factor

S c :

Critical strain energy density factor

T :

Nonsingular term stress

Y I :

Non-dimensional mode I stress intensity factor

Y II :

Non-dimensional mode II stress intensity factor

α I, α II :

Magnitude parameters of a mixed-mode loading

β :

Crack inclined angle for an SCB specimen

θ 0 :

Crack initiation angle

κ :

=3 − 4ν for plain strain, =(3 − ν)/(1+ν) for plain stress

λ :

An empirical coefficient calculated from (r c/r Ic)1/2

μ :

Modulus of rigidity

ν :

Poisson’s ratio

σ h :

Far-field in-plane minimum principal stress

σ H :

Far-field in-plane maximum principal stress

σ n :

Normal stress acting on the fracture surfaces

σ θθ :

Tangential stress ahead of a crack

σ θθc :

Critical tangential stress

φ :

Normalized dimensionless parameter that controls the fracture path

References

  • Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44:739–757. doi:10.1016/j.ijrmms.2006.11.006

    Article  Google Scholar 

  • Aghighi MA, Rahman SS (2010) Initiation of a secondary hydraulic fracture and its interaction with the primary fracture. Int J Rock Mech Min Sci 47:714–722

    Article  Google Scholar 

  • Ai T, Zhang R, Zhou HW, Pei JL (2014) Box-counting methods to directly estimate the fractal dimension of a rock surface. Appl Surf Sci 314:610–621

    Article  Google Scholar 

  • Akbardoost J, Ayatollahi MR (2014) Experimental analysis of mixed mode crack propagation in brittle rocks: the effect of non-singular terms. Eng Fract Mech 129:77–89

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2011) Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Proc Eng 10:311–318. doi:10.1016/j.proeng.2011.04.054

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77:2200–2212. doi:10.1016/j.engfracmech.2010.03.009

    Article  Google Scholar 

  • Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46:1023–1034

    Article  Google Scholar 

  • Al-Shayea NA (2005) Crack propagation trajectories for rocks under mixed mode I–II fracture. Eng Geol 81:84–97. doi:10.1016/j.enggeo.2005.07.013

    Article  Google Scholar 

  • Antunes FV, Ramalho A, Ferreira JM (2000) Identification of fatigue crack propagation modes by means of roughness measurements. Int J Fatigue 22:781–788

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2007) Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comp Mater Sci 38:660–670. doi:10.1016/j.commatsci.2006.04.008

    Article  Google Scholar 

  • Ayatollahi MR, Saboori B (2015) Maximum tangential strain energy density criterion for general mixed mode I/II/III brittle fracture. Int J Damage Mech 24:263–278. doi:10.1177/1056789514530745

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM, Hassani MM (2006) Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Mater Sci Eng A 417:348–356. doi:10.1016/j.msea.2005.11.002

    Article  Google Scholar 

  • Babadagli T, Develi K (2003) Fractal characteristics of rocks fractured under tension. Theor Appl Fract Mech 39:73–88

    Article  Google Scholar 

  • Backers T, Stephansson O (2012) ISRM suggested method for the determination of mode II fracture toughness. Rock Mech Rock Eng 45:1011–1022

    Article  Google Scholar 

  • Berchenko I, Detournay E, Chandler N (1997) Propagation of natural hydraulic fractures. Int J Rock Mech Min Sci 34:63-e61

    Article  Google Scholar 

  • Bunger AP, Gordeliy E, Detournay E (2013) Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. J Mech Phys Solids 61:1636–1654

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66:79–97. doi:10.1016/S0013-7952(02)00033-9

    Article  Google Scholar 

  • Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:R59–R62. doi:10.1007/BF01157555

    Article  Google Scholar 

  • Economides MJ, Martin T, BJ Services Company (2007) Modern fracturing: enhancing natural gas production. Energy Tribune Publishing, Houston

    Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–527

    Article  Google Scholar 

  • Funatsu T, Shimada H, Matsui K, Seto M (2014a) Effect of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8

    Google Scholar 

  • Funatsu T, Shimizu N, Kuruppu M, Matsui K (2014b) Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance. Rock Mech Rock Eng 48:143–157

    Article  Google Scholar 

  • Garagash DI (2006) Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Int J Solids Struct 43:5811–5835

    Article  Google Scholar 

  • Glover PWJ, Matsuki K, Hikima R, Hayashi K (1997) Fluid flow in fractally rough synthetic fractures. Geophys Res Lett 24:1803–1806

    Article  Google Scholar 

  • Hahn GT (1984) The influence of microstructure on brittle fracture toughness. Metall Trans A 15:947–959. doi:10.1007/BF02644685

    Article  Google Scholar 

  • Hasanpour R, Choupani N (2008) Mixed-mode study of rock fracture mechanics by using the modified Arcan specimen test. World Acad Sci Eng Tech 41:764–769

    Google Scholar 

  • Hatzor YH, Palchik V (1997) The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int J Rock Mech Min Sci 34:805–816

    Article  Google Scholar 

  • Hossain MM, Rahman MK (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Pet Sci Eng 60:86–104

    Article  Google Scholar 

  • Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. Fract Anal ASTM STP 560:2–28

    Google Scholar 

  • Im S, Ban H, Kim Y-R (2014) Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Constr Build Mater 52:413–421

    Article  Google Scholar 

  • Isakov E, Ogilvie SR, Taylor CW, Glover PWJ (2001) Fluid flow through rough fractures in rocks I: high resolution aperture determinations. Earth Planet Sci Lett 191:267–282

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33:179–206

    Article  Google Scholar 

  • Khan SMA, Khraisheh MK (2004) A new criterion for mixed mode fracture initiation based on the crack tip plastic core region. Int J Plast 20:55–84. doi:10.1016/s0749-6419(03)00011-1

    Article  Google Scholar 

  • Klein E, Reuschlé T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41:975–986. doi:10.1016/j.ijrmms.2004.03.003

    Article  Google Scholar 

  • Krishnan GR, Zhao XL, Zaman M, Roegiers JC (1998) Fracture toughness of a soft sandstone. Int J Rock Mech Min Sci 35:695–710. doi:10.1016/S0148-9062(97)00324-0

    Article  Google Scholar 

  • Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91:133–150. doi:10.1016/j.engfracmech.2012.01.013

    Article  Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47:267–274. doi:10.1007/s00603-013-0422-7

    Article  Google Scholar 

  • Kusumoto S, Gudmundsson A, Simmenes TH, Geshi N, Philipp SL (2013) Inverse modeling for estimating fluid-overpressure distributions and stress intensity factors from an arbitrary open-fracture geometry. J Struct Geol 46:92–98

    Article  Google Scholar 

  • Lee HS, Cho TF (2002) Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech Rock Eng 35:299–318. doi:10.1007/s00603-002-0028-y

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK (1993) Stress intensity factors for semi-circular specimens under three-point bending. Eng Fract Mech 44:363–382

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2—mixed-mode. Int J Rock Mech Min Sci Geomech Abs 31:199–212. doi:10.1016/0148-9062(94)90464-2

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Henry Holt and Company, New York

    Google Scholar 

  • Méheust Y, Schmittbuhl J (2000) Flow enhancement of a rough fracture. Geophys Res Lett 27:2989–2992

    Article  Google Scholar 

  • Mirsayar M (2014) A new mixed mode fracture test specimen covering positive and negative values of T-stress. Eng Solid Mech 2:67–72

    Article  Google Scholar 

  • Mishuris G, Wrobel M, Linkov A (2012) On modeling hydraulic fracture in proper variables: stiffness, accuracy, sensitivity. Int J Eng Sci 61:10–23

    Article  Google Scholar 

  • Mogilevskaya SG, Rothenburg L, Dusseault MB (2000) Growth of pressure-induced fractures in the vicinity of a wellbore. Int J Fract 104:23–30

    Article  Google Scholar 

  • Palaniswamy K, Knauss WG (1972) Propagation of a crack under general, in-plane tension. Int J Fract Mech 8:114–117. doi:10.1007/BF00185207

    Article  Google Scholar 

  • Rahman MK, Joarder AH (2006) Investigating production-induced stress change at fracture tips: implications for a novel hydraulic fracturing technique. J Pet Sci Eng 51:185–196

    Article  Google Scholar 

  • Rao Q, Sun Z, Stephansson O, Li C, Stillborg B (2003) Shear fracture (mode II) of brittle rock. Int J Rock Mech Min Sci 40:355–375

    Article  Google Scholar 

  • Ren L, Zhu Z, Wang M, Zheng T, Ai T (2013a) Mixed-mode elastic-plastic fractures: improved R-criterion. J Eng Mech 140:04014033

    Article  Google Scholar 

  • Ren L, Zhu Z, Yang Q, Ai T (2013b) Investigation on the applicability of several fracture criteria to the mixed mode brittle fractures. Adv Mech Eng 5:545108. doi:10.1155/2013/545108

    Article  Google Scholar 

  • Richard HA, Schramm B, Schirmeisen NH (2014) Cracks on mixed mode loading-theories, experiments, simulations. Int J Fatigue 62:93–103. doi:10.1016/j.ijfatigue.2013.06.019

    Article  Google Scholar 

  • Sarmadivaleh M, Rasouli V (2015) Test design and sample preparation procedure for experimental investigation of hydraulic fracturing interaction modes. Rock Mech Rock Eng 48:93–105

    Article  Google Scholar 

  • Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10:305–321. doi:10.1007/BF00035493

    Article  Google Scholar 

  • Swartz SE, Taha NM (1990) Mixed mode crack propagation and fracture in concrete. Eng Fract Mech 35:137–144

    Article  Google Scholar 

  • Tokunaga TK, Wan J, Sutton SR (2000) Transient film flow on rough fracture surfaces. Water Res Res 36:1737–1746

    Article  Google Scholar 

  • Wei H, Li L, Wu X, Hu Y (2011) The analysis and theory research on the factor of multiple fractures during hydraulic fracturing of CBM wells. Proc Earth Planet Sci 3:231–237

    Article  Google Scholar 

  • Whitcomb JD (1986) Parametric analytical study of instability-related delamination growth. Comp Sci Technol 25:19–48

    Article  Google Scholar 

  • Xeidakis GS, Samaras IS, Zacharopoulos DA, Papakaliatakis GE (1997) Trajectories of unstably growing cracks in mixed mode I–II loading of marble beams. Rock Mech Rock Eng 30:19–33

    Article  Google Scholar 

  • Yeo IW, de Freitas MH, Zimmerman RW (1998) Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 35:1051–1070. doi:10.1016/S0148-9062(98)00165-X

    Article  Google Scholar 

  • Zhang X, Jeffrey RG (2006) The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Geophys J Int 166:1454–1465. doi:10.1111/j.1365-246X.2006.03062.x

    Article  Google Scholar 

  • Zhang Z, Nemcik J (2013) Friction factor of water flow through rough rock fractures. Rock Mech Rock Eng 46:1125–1134

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309. doi:10.1016/j.engfracmech.2013.02.009

    Article  Google Scholar 

  • Zhang X, Jeffrey RG, Thiercelin M (2009) Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. J Geophys Res Solid Earth 114:B12406. doi:10.1029/2009JB006548

    Article  Google Scholar 

  • Zhang X, Jeffrey RG, Bunger AP, Thiercelin M (2011) Initiation and growth of a hydraulic fracture from a circular wellbore. Int J Rock Mech Min Sci 48:984–995

    Article  Google Scholar 

  • Zhang R, Ai T, Zhou HW, Ju Y, Zhang ZT (2015) Fractal and volume characteristics of 3D mining-induced fractures under typical mining layouts. Environ Earth Sci 73:6069–6080

    Article  Google Scholar 

  • Zhao H, Chen M (2010) Extending behavior of hydraulic fracture when reaching formation interface. J Petrol Sci Eng 74:26–30

    Article  Google Scholar 

  • Zhou HW, Xie H (2003) Direct estimation of the fractal dimensions of a fracture surface of rock. Surf Rev Lett 10:751–762. doi:10.1142/S0218625X03005591

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Qizhi Wang of Sichuan University for his kind help. This work was financially supported by the Provincial Science and Technology Support Project of Sichuan Province (2012FZ0124) and the Major State Basic Research Project of NSFC (2011CB201201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Z. Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Xie, L.Z., Xie, H.P. et al. Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone. Rock Mech Rock Eng 49, 3137–3153 (2016). https://doi.org/10.1007/s00603-016-0959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0959-3

Keywords

Navigation