Skip to main content
Log in

A Refined Model for Solid Particle Rock Erosion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A procedure for the estimation of distribution parameters of a Weibull distribution model K 1 = f(K 12/4Ic /σ 23/4C ) for solid particle erosion, as recently suggested in Rock Mech Rock Eng, doi: 10.1007/s00603-014-0658-x, 2014, is derived. The procedure is based on examinations of elastic–plastically responding rocks (rhyolite, granite) and plastically responding rocks (limestone, schist). The types of response are quantified through SEM inspections of eroded surfaces. Quantitative numbers for the distribution parameter K 1 are calculated for 30 rock materials, which cover a wide range of mechanical properties. The ranking according to the parameter K 1 is related to qualitative rock classification schemes. A modified proposal for the erosion of schist due to solid particle impingement at normal incidence is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

b :

Distribution scale parameter

C :

Target material flow stress parameter

C P :

Specific heat target material

e :

Coefficient of restitution

E :

Effective modulus

E R :

Relative erosion

E LR :

Relative erosion due to lateral fracture

E PR :

Relative erosion due to plastic deformation

F :

Numerical constant

H M :

Target material hardness

K 1 :

Erosion function parameter

K Ic :

Target material fracture toughness

n :

Work hardening coefficient

N i :

Number of eroded sections

NL :

Number of sections related to lateral fracture

N P :

Number of sections related to plastic deformation

v P :

Erodent particle impact velocity

α :

Erodent particle impact angle

χ :

Transition parameter

λ :

Distribution scale parameter

ρ P :

Erodent material density

σ C :

Target material compressive strength

References

  • Backers T (2004) Fracture toughness determination and micromechanics of rock under mode I and mode II loading. Dissertation, Universität Potsdam, Germany

  • Breder K, Giannakopoulos AE (1990) Erosive wear in Al2O3 exhibiting Mode-I R-curve behavior. Ceram Eng Sci Proc 11:1046–1060

    Article  Google Scholar 

  • Brown R, Jun EJ, Edington JW (1981) Erosion of α-Fe by spherical glass particles. Wear 70:347–363

    Article  Google Scholar 

  • Deere DU, Miller RP (1966) Engineering classification and index properties for intact rocks. Technical Report AFWL-TR-65-116, Air Force Weapons Laboratory, Kirtland, NM, USA

  • Dodson B (2006) The Weibull analysis handbook, 2nd edn. American Soc. for Quality, Milwaukee

    Google Scholar 

  • Gotzmann J (1989) Modellierung des Strahlverschleißes an keramischen Werkstoffen. Schmierungstechnik 20:324–329

    Google Scholar 

  • Heßling M (1988) Grundlagenuntersuchungen über das Schneiden von Gestein mit abrasiven Höchstdruckwasserstrahlen. Dissertation, RWTH Aachen, Germany

  • Hutchings IM (1981) A model for the erosion of metals by spherical particles at normal incidence. Wear 70:269–281

    Article  Google Scholar 

  • Hutchings IM (1992) Tribology: friction and wear of engineering materials. Edward Arnold, CRC Press, London

    Google Scholar 

  • Kobayashi R, Matsuki K, Otsuka N (1986) Size effect in the fracture toughness of Ogino tuff. Int J Rock Mech Min Sci Geomech Abstr 23:13–18

    Article  Google Scholar 

  • Momber AW (2011) Fracture features in soda-lime glass after testing with a spherical indenter. J Mater Sci 46:4494–4508

    Article  Google Scholar 

  • Momber AW (2013) Erosion of schist due to solid particle impingement. Rock Mech Rock Eng 46:849–857

    Article  Google Scholar 

  • Momber AW (2014a) Fracture toughness effects in geomaterial solid particle erosion. Rock Mech Rock Eng. doi:10.1007/s00603-014-0658-x

    Google Scholar 

  • Momber AW (2014b) Effects of target material properties on solid particle erosion of geomaterials at different impingement velocities. Wear 319:69–83

    Article  Google Scholar 

  • O’Flynn DJ, Bingley MS, Bradley A, Burnett AJ (2001) A model to predict the solid particle erosion rate of metals and its assessment using heat-treated steels. Wear 248:162–177

    Article  Google Scholar 

  • Rogers CO, Pang SS, Kumano A, Goldsmith W (1986) Response of dry- and liquid-filled porous rocks to static and dynamic loading by variously-shaped projectiles. Rock Mech 19:235–260

    Article  Google Scholar 

  • Sundararajan G (1991) A comprehensive model for the solid particle erosion of ductile materials. Wear 149:111–127

    Article  Google Scholar 

  • Sundararajan G, Shewmon P (1987) Oblique impact of a hard ball against ductile, semi-infinite target materials experiment and analysis. Int J Impact Eng 6:3–22

    Article  Google Scholar 

  • Verhoef PN (1987) Sandblast testing of rock. Int J Rock Mech Min Sci Geomech Abstr 24:185–192

    Article  Google Scholar 

  • Whittacker BN, Singh RN, Sun G (1992) Rock fracture mechanics: principles, design and applications. Elsevier, Amsterdam

    Google Scholar 

  • Wiederhorn SM, Hockey BJ (1983) Effect of material parameters on the erosion resistance of brittle materials. J Mater Sci 18:766–780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Momber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momber, A.W. A Refined Model for Solid Particle Rock Erosion. Rock Mech Rock Eng 49, 467–475 (2016). https://doi.org/10.1007/s00603-015-0745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0745-7

Keywords

Navigation