Skip to main content
Log in

Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

We used the differential stress-induced damage (DSID) model to predict anisotropic crack propagation under tensile and shear stress. The damage variable is similar to a crack density tensor. The damage function and the damage potential are expressed as functions of the energy release rate, defined as the thermodynamic force that is work-conjugate to damage. Contrary to the previous damage models, flow rules are obtained by deriving dissipation functions by the energy release rate, and thermodynamic consistency is ensured. The damage criterion is adapted from the Drucker–Prager yield function. Simulations of biaxial stress tests showed that: (1) three-dimensional states of damage can be obtained for three-dimensional states of stress; (2) no damage propagates under isotropic compression; (3) crack planes propagate in the direction parallel to major compression stress; (4) damage propagation hardens the material; (5) stiffness and deformation anisotropy result from the anisotropy of damage. There is no one-to-one relationship between stress and damage. We demonstrated the effect of the loading sequence in a two-step simulation (a shear loading phase and a compression loading phase): the current state of stress and damage can be used to track the effect of stress history on damage rotation. We finally conducted a sensitivity analysis with the finite element method, to explore the stress conditions in which damage is expected to rotate around a circular cavity subject to pressurization or depressurization. Simulation results showed that: (1) before damage initiation, the DSID model matches the analytical solution of stress distribution obtained with the theory of elasticity; (2) the DSID model can predict the extent of the tensile damage zone at the crown, and that of the compressive damage zone at the sidewalls; (3) damage generated during a vertical far-field compression followed by a depressurization of the cavity is more intense than that generated during a depressurization of the cavity followed by a vertical far-field compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abu Al-Rub RK, Kim SM (2010) Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech 77:1577–1603

    Article  Google Scholar 

  • Abu Al-Rub RK, Voyiadjis GZ (2003) On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40:2611–2643

    Article  Google Scholar 

  • Arson C (2009) Etude théorique et numérique de l’endommagement thermo-hydro-mécanique des milieux poreux non saturés. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris

  • Arson C (2012) Using a geo-mechanical damage model to assess permeability in cracked porous media: internal length parameter issues. Special Topics Rev Porous Media 3:69–77

    Article  Google Scholar 

  • Ashby MF, Sammis CG (1990) The damage mehcanics of brittle solids in compression. Pure Appl Geophys 133(3):489–521

    Article  Google Scholar 

  • Bakhtiary E, Xu H, Arson C (2014) Probabilistic optimization of a continuum mechanics model to predict differential stress-induced damage in claystone. Int J Rock Mech Min Sci

  • Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7)

  • Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333

    Article  Google Scholar 

  • Chaboche JL (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1:148–171

    Article  Google Scholar 

  • Chaboche JL (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329

    Article  Google Scholar 

  • Chan K, Munson D, Bodner S, Fossum A (1996) Cleavage and creep freacture of rock salt. Acta Mater 44(9):3553–3565

    Article  Google Scholar 

  • Chan KS, Bodner SR, Munson DE (2001) Permeability of wipp salt during damage evolution and healing. Int J Damage Mech 10(4):347–375

    Article  Google Scholar 

  • Cicekli U, Voyiadjis GZ (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plasticity 23:1874–1900

    Article  Google Scholar 

  • Collins IF, Houlsby GT (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc Math Phys Eng Sci 453(1964):1975–2001

  • Crossno P, Rogers DH, Brannon RM, Coblentz D, Fredrich JT (2005) Visualization of geologic stress perturbations using mohr diagrams. IEEE Trans Vis Comput Graphics 11(5):508–518

    Article  Google Scholar 

  • Deng H, Nemat-Nasser S (1992) Dynamic damage evolution in brittle solids. Mech Mater 14:83–103

    Article  Google Scholar 

  • Desmorat R (2006) Positivité de la dissipation intrinsèque d’une classe de modèles d’endommagement anisotropes non standards. Comptes Rendus Mecanique

  • Dyskin AV, Germanovich LN, Ustinov KB (1999) A 3-d model of wing crack growth and interaction. Eng Fract Mech 63(1):81–110

    Article  Google Scholar 

  • Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33:2294–2306

    Article  Google Scholar 

  • Gatmiri B, Arson C (2008) Theta-stock, a powerful tool for thermohydromechanical behaviour and damage modelling of unsaturated porous media. Comput Geotech 35(8):890–915

    Article  Google Scholar 

  • Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A Solids 17(3):439–460

    Article  Google Scholar 

  • Halm D, Dragon A (2002) Modelisation de l’endommagement par mesofissuration du granite. Revue Francaise de Genie Civi 17:21–33

    Google Scholar 

  • Hansen N, Schreyer H (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389

    Article  Google Scholar 

  • Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6:333–363

    Article  Google Scholar 

  • Homand-Etienne F, Hoxha D, Shao JF (1998) A Continuum Damage Constitutive Law for Brittle Rocks. Comput Geotech 22(2):135–151

    Article  Google Scholar 

  • Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos Trans R Soc Lond Ser A Math Phys Sci 319(1549):337–374

    Article  Google Scholar 

  • Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40(5):725–738

    Article  Google Scholar 

  • Houlsby GT, Puzrin AM (2006) Principles of hyperplasticity an approach to plasticity theory based on thermodynamic principles. London

  • Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34:267–277

    Article  Google Scholar 

  • Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52(3–4):271–291

    Article  Google Scholar 

  • Hütter M, Tervoort T (2008) Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure. Acta Mech 201(1–4):297–312

    Article  Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing

  • Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335

    Article  Google Scholar 

  • Keller A, Hutter K (2011) On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J Mech Phys Solids 59(5):1115–1120

    Article  Google Scholar 

  • Krajcinovic D (1996) Damage mechanics. North-Holland, Amsterdam

  • Lauterbach B, Gross D (1998) Crack growth in brittle solids under compression. Mech Mater 29(2):81–92

    Article  Google Scholar 

  • Lee J, Fenves G (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124:892–900

    Article  Google Scholar 

  • Lemaître J, Desmorat R (2005) Engineering damage mechanics. Ductile, creep, fatigue and brittle failure. Springer, Berlin

  • Lubliner J, Oliver J, Oller S, Onate E (1989) A platic-damage model for concrete. Int J Solids Struct 23(3):299–326

    Article  Google Scholar 

  • Lux KH, Eberth S (2007) Fundamentals and first application of a new healing model for rock salt. In: Proceedings and monographs in engineering, water and earth sciences, pp 129–138

  • Mazars J (1986) A description of micro- and macro scale damage of concrete structures. Eng Fract Mech 25(5–6):729–737

    Article  Google Scholar 

  • Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365

    Article  Google Scholar 

  • Murakami S, Kamiya K (1996) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486

    Article  Google Scholar 

  • Nemat-Nasser S, Hori M (eds) (1983) Rock failure in compression. Ninth workshop geothermal reservoir engineering. Stanford University, Stanford

    Google Scholar 

  • Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22(4):96–108

    Article  Google Scholar 

  • Oda M (1984) Similarity rules of crack geometry in statistically homogeneous rock masses. Mech Mater 3:119–129

    Article  Google Scholar 

  • Ortiz M (1985) A constitutive theory for the inelastic behaviour of concrete. Mech Mater 4:67–93

    Article  Google Scholar 

  • Pellet F, Hajdu A, Deleruyelle F, Besnus F (2005) A viscoplastic model including anisotropic damage for the time dependent behaviour of rock. Int J Numer Anal Meth Geomech 29:941–970

    Article  Google Scholar 

  • Raj R (1982) Creep in polycrystalline aggregates by matter transport through a liquid phase. J Geophys Res 87(B6):4731–4739

    Article  Google Scholar 

  • Senseny PE, Hansen FD, Russell JE, Carter NL, Handin JW (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378

    Article  Google Scholar 

  • Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Meth Geomech 29(12):1231–1247

    Article  Google Scholar 

  • Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592

    Article  Google Scholar 

  • Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473

    Article  Google Scholar 

  • Swoboda G, Yang Q (1999) An energy-based damage model of geomaterials. I. Formulation and numerical results. Int J Solids Struct 36(12):1719–1734

    Article  Google Scholar 

  • Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27(7):1025–1044

    Article  Google Scholar 

  • Willemse EJ, Pollard DD (1998) On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J Geophys Res Solid Earth (1978–2012) 103(B2):2427–2438

  • Xu H (2014) Theoretical and numerical modeling of anisotropic damage in rock for energy geomechancis. PhD thesis, Georgia Institute of Technology

  • Xu H, Arson C (2014) Anisotropic damage models for geomaterials: theoretical and numerical challenges. Int J Comput Methods Spec Issue Comput Geomech 11(2)

  • Yu H (2006) Plasticity and geotechnics. Springer, Berlin

  • Zhou H, Hu D, Zhang F, Shao J (2011) A thermo-plastic/viscoplastic dmage model for geomaterials. Acta Mech Solida Sin 24(3):195–208

    Article  Google Scholar 

  • Zhou J, Shao J, Xu W (2006) Coupled modeling of damage growth and permeability variation in brittle rocks. Mech Res Commun 33(4):450–459

    Article  Google Scholar 

  • Zhu C, Arson C (2014) A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure. Acta Geotech. doi:10.1007/s11,440-013-0281-0

Download references

Acknowledgments

This study was conducted at the Georgia Institute of Technology, as part of a research program on Finite Element Modeling of Hydraulic Fracturing. Funding was provided by ConocoPhillips, Houston, Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloé Arson.

Notation: List of Parameters

Notation: List of Parameters

Symbol

Name

Dimensions

SI units

\(\varvec{\Omega }\)

Damage tensor

\({\mathrm{M}} ^{0}{\mathrm{L} }^{0}{\mathrm T}^{0}\)

\(N\)

Number of cracks

\({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)

\(d_{k}\)

Volumetric fraction of the cracks

\({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)

\(\mathbf {n}_{k}\)

Normal direction of the kth crack

\({\mathrm M} ^{0}{\mathrm L}^0{\mathrm T}^{0}\)

\(r_{i}\)

Radius of the ith crack plane

\({\mathrm M}^{0}{\mathrm L}^{1}{\mathrm T}^{0}\)

mm

\(e_{i}\)

Thickness of the ith crack plane

\({\mathrm M} ^0{\mathrm L} ^1{\mathrm T} ^0\)

mm

\(\varvec{\varepsilon }\)

Total strain

\({\mathrm M} ^0{\mathrm L} ^0{\mathrm T} ^0\)

\(\varvec{\varepsilon }^{el}\)

Pure elastic strain

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\varvec{\varepsilon }^{ed}\)

Elasto-damage strain

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\varvec{\varepsilon }^{id}\)

Irreversible strain

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\varvec{\varepsilon }^{E}\)

Total elastic strain

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\varvec{\sigma }\)

Stress

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(\mathbf {Y}\)

Damage conjugated force

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(\dot{\varvec{\Omega }}\)

Damage rate

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\varvec{\varepsilon }^{el}\)

Pure elastic strain

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(G_{\mathrm{s}}\)

Gibbs free energy

\(\mathrm M ^1\mathrm L ^2\mathrm T ^{-2}\)

J

\(\mathbb {S}_{0}\)

Initial compliance tensor

\(\mathrm M ^{-1}\mathrm L ^1\mathrm T ^2\)

GPa\({^{-1}}\)

\(a_{i}\)

Material parameters accounting for stiffness due to damage

\(\mathrm M ^{-1}\mathrm L ^1\mathrm T ^2\)

GPa\({^{-1}}\)

\(\nu _{0}\)

Initial Poisson’s ratio

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(E_{0}\)

Initial Young’s modulus

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

GPa

\(\varvec{\delta }\)

second-order identity tensor

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(f_{\mathrm{d}}\)

Damage function

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(J^*\)

Second invariant of the deviatoric part of the physical damage force

\(\mathrm M ^2\mathrm L ^{-2}\mathrm T ^{-4}\)

MPa\({}^{2}\)

\(I^*\)

first invariant of the physical damage force

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(\alpha\)

Material constant to control the shape of the cone

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(C_{0}\)

Initial damage threshold

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(C_{1}\)

Damage hardening variable

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(\mathbb {P}_{1}\)

Projection tensor to make the damage driving force parallel to stress

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\mathbb {P}_{2}\)

Projection tensor to account for the damage rate direction

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(\sigma ^{(p)}\)

pth eigenstress

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(\mathbf {n}^{(p)}\)

pth principal direction

\(\mathrm M ^0\mathrm L ^0\mathrm T ^0\)

\(g_{\mathrm{d}}\)

Damage potential

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

\(C_{2}\)

Hardening variable in damage potential

\(\mathrm M ^1\mathrm L ^{-1}\mathrm T ^{-2}\)

MPa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Arson, C. Mechanistic Analysis of Rock Damage Anisotropy and Rotation Around Circular Cavities. Rock Mech Rock Eng 48, 2283–2299 (2015). https://doi.org/10.1007/s00603-014-0707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0707-5

Keywords

Navigation