Skip to main content
Log in

Spalling Experiments on Large Hard Rock Specimens

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Specimens of coarse-grained Äspö diorite were axially compressed to observe stress-induced spalling. The specimens had a novel design characterized by two manufactured large radius notches on opposite sides. The tangential stress occurring in the notches aimed to represent the tangential loading around a circular opening. Fracture stages were monitored by acoustic emission measurements. Rock chips were formed similar to those found in situ, which indicates a similar fracture process. Slabs were cut out from the specimens and impregnated using a fluorescent material to visualize the cracks. The cracks were subsequently examined by the naked eye and by means of microscopy images, from which fracture paths could be identified and related to different minerals and their crystallographic orientations. The microscopy analyses showed how the stress field and the microstructure interact. Parallel cracks were formed 2–4 mm below the surface, sub-parallel to the direction of the maximum principal stress. The crack initiation, the roles of minerals such as feldspar, biotite and quartz and their grain boundaries and crystallographic directions are thoroughly studied and discussed in this paper. Scale effects, which relate to the stress gradient and microstructure, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(E\) :

Young’s modulus

\(\nu \) :

Poisson ratio

σ ci :

Crack initiation stress

σ cd :

Crack damage stress

UCS:

Uniaxial compressive strength

\(\rho \) :

Wet density

References

  • Åkesson U, Lindqvist JE, Göransson M, Stigh J (2001) Relationship between texture and mechanical properties of granites, central Sweden, by use of image-analysing techniques. Bull Eng Geol Environ 60(4):277–284. doi:10.1007/s100640100105

    Article  Google Scholar 

  • Åkesson U, Stigh J, Lindqvist JE, Göransson M (2003) The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy. Eng Geol 68(3–4):275–288. doi:10.1016/S0013-7952(02)00233-8

    Article  Google Scholar 

  • Andersson JC (2007) Rock mass response to coupled mechanical thermal loading: Äspö pillar stability experiment. PhD thesis, Royal Techncal University, Stockholm

  • Autio J (1997) Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the research tunnel at olkiluoto. SKB TR-97-24, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Berglund J, Curtis P, Eliasson T, Olsson T, Starzec P, Tullborg EL (2003) Äspö Hard Rock Laboratory-Update of the geological model (2002) International Progress Report IPR-03-34. Swedish Nuclear Waste Management Co., Stockholm

    Google Scholar 

  • Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71(16):3939–3953. doi:10.1029/JZ071i016p03939

    Article  Google Scholar 

  • Carter BJ (1992) Size and stress gradient effects on fracture around cavities. Rock Mech Rock Eng 25(3):167–186. doi:10.1007/BF01019710

    Article  Google Scholar 

  • Carter BJ, Lajtai EZ, Petukhov A (1991) Primary and remote fracture around underground cavities. Int J Num Anal Meth Geomech 15(1):21–40. doi:10.1002/nag.1610150103

    Article  Google Scholar 

  • Cho N, Martin CD, Sego DC, Jeon J (2010) Dilation and spalling in axially compressed beams subjected to bending. Rock Mech Rock Eng 43(2):123–133. doi:10.1007/s00603-009-0049-x

    Article  Google Scholar 

  • Daemen JJK, Fairhurst C (1971) Influence of failed rock properties on tunnel stability. In: Clark GB (ed) Proceedings of 12th U.S. symposium on rock mechanics. University of Missouri-Rolla, AIME, New York, pp 855–875

  • Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812. doi:10.1016/j.ijrmms.2004.02.003

    Article  Google Scholar 

  • Eberhardt E (2001) Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. Int J Rock Mech Min Sci 38(4):499–518. doi:10.1016/S1365-1609(01)00017-X

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35(2):222–233. doi:10.1139/t97-091

    Article  Google Scholar 

  • Eberhardt E, Stimpson B, Stead D (1999a) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99. doi:10.1007/s006030050026

    Article  Google Scholar 

  • Eberhardt E, Stimpson B, Stead D (1999b) The influence of mineralogy on the initiation of microfractures in granite. In: Vouille G, Berest B (eds) 9th international congress on rock mechanics. A A Balkema, Rotterdam, pp 1007–1010

    Google Scholar 

  • Ewy RT, Cook NGW (1990) Deformation and fracture around cylindrical openings in rock—I. Observations and analysis of deformations. Int J Rock Mech Min Sci Geomech Abstr 27(5):387–407. doi:10.1016/0148-9062(90)92713-O

    Article  Google Scholar 

  • Fuenkajorn K, Daemen JJK (1992) Drilling-induced fractures in borehole walls. J Petrol Technol 44(2):210–216. doi:10.2118/21301-PA

    Article  Google Scholar 

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic shield. Precambrian Res 35:15–52. doi:10.1016/0301-9268(87)90044-1

    Article  Google Scholar 

  • Gay NC (1973) Fracture growth around openings in thick-walled cylinders of rock subjected to hydrostatic compression. Int J Rock Mech Min Sci Geomech Abstr 10(3):209–233. doi:10.1016/0148-9062(73)90032-6

    Article  Google Scholar 

  • Haimson B (2007) Micromechanisms of borehole instability leading to breakouts in rocks. Int J Rock Mech Min Sci 44(2):157–173. doi:10.1016/j.ijrmms.2006.06.002

    Article  Google Scholar 

  • Haimson BC, Herrick CG (1986) Borehole breakouts-a new tool for estimating in situ stress? In: Stephansson O (ed) Proceedings of international symposium on rock stress and rock stress measurements, Stockholm, pp 271–280

  • Haimson BC, Herrick CG (1989) Borehole breakouts and in situ stress. In: Rowley JC (ed) Drilling symposium 1989, 12th annual energy-sources technology conference and exhibition, vol 22. ASME, New York, pp 17–22

  • Hallbauer DK, Wagner H, Cook NGW (1973) Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr 10(6):713–726. doi:10.1016/0148-9062(73)90015-6

    Article  Google Scholar 

  • Hardenby C, Sigurdsson O (2010) Äspö Hard Rock Laboratory. the TASS-tunnel, Geological mapping. SKB R-10-35, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • HBM (2014) HBM test and measurement: transducers. Load cells, DAC. http://www.hbm.com

  • Hoek E (1965) Rock fracture under static conditions. PhD thesis, Univ Cape Town, South Africa

  • Jacobsson L, Christiansson R, Martin CD (2010) Experimental determination of rock spalling initiation in hard rock. In: Zhao J, Labiouse JP, Mathier JF (eds) Rock mechanics in civil and environmental engineering: European rock mechanics symposium EUROCK 2010. CRC Press, pp 327–330

  • Kelsall PC, Case JB, Chanbannes CR (1982) Topical report. a preliminary evaluation of the rock mass disturbance resulting from shaft, tunnel and borehole excavation. Tech. Rep. Project No. NM79-137, D’Appolonia Consulting Engineers Inc., Albuquerque

  • Kornfält KA, Persson PO, Wikman H (1997) Granitoids from the Äspö area, southeastern Sweden—geochemical and geochronological data. GFF 119:109–114. doi:10.1080/11035899709546465

    Article  Google Scholar 

  • Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100:449–480. doi:10.1016/0040-1951(83)90198-1

    Article  Google Scholar 

  • Kronenberg AK, Kirby SH, Pinkston J (1990) Basal slip and mechanical anisotropy of biotite. J Geophys Res Solid Earth 95(B12):19257–19278. doi:10.1029/JB095iB12p19257

  • Kyowa (2014) Strain-gage technologies kyowa. http://www.kyowa-ei.com

  • Labuz JF, Dai ST, Papamichos E (1996) Plane-strain compression of rock-like materials. Int J Rock Mech Min Sci Geomech Abstr 33(6):573–584. doi:10.1016/0148-9062(96)00012-5

    Article  Google Scholar 

  • Lajtai EZ (1972) Effect of tensile stress gradient on brittle fracture initiation. Int J Rock Mech Min Sci Geomech Abstr 9(5):569–578. doi:10.1016/0148-9062(72)90009-5

    Article  Google Scholar 

  • Lajtai EZ (1998) Microscopic fracture processes in a granite. Rock Mech Rock Eng 31(4):237–250. doi:10.1007/s006030050023

    Article  Google Scholar 

  • Li L, Lee P, Tsui Y, Tham L, Tang C (2003) Failure process of granite. Int J Geomech 3(1):84–98. doi:10.1061/(ASCE)1532-3641(2003)3:1(84)

    Article  Google Scholar 

  • Lindqvist JE, Åkesson U, Malaga-Starzec K (2007) Microstructure and functional properties of rock materials. Mater Charact 58:1183–1188

    Article  Google Scholar 

  • Liu S, Faisal Anwar AHM, Kim BC, Ichikawa Y (2006) Observation of microcracks in granite using a confocal laser scanning microscope. Int J Rock Mech Min Sci 43(8):1293–1305. doi:10.1016/j.ijrmms.2006.04.006

    Article  Google Scholar 

  • Mahabadi OK (2012) Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials. PhD thesis, Univ. Toronto, Canada

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around circular underground openings. PhD thesis, University of Manitoba, Winnipeg

  • Martin CD (1997) Seventeenth canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725. doi:10.1139/t97-030

    Article  Google Scholar 

  • Martin CD, Christiansson R (2009) Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci 46(2):219–228. doi:10.1016/j.ijrmms.2008.03.001

    Article  Google Scholar 

  • Martin CD, Martino JB, Dzik EJ (1994) Comparison of borehole breakouts from laboratory and field tests. In: EUROCK94, SPE/ISRM rock mechanics in petroleum engineering, pp 183–190

  • Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around a circular test tunnel. Int J Rock Mech Min Sci 34(7):1065–1073. doi:10.1016/S1365-1609(97)90200-8

    Article  Google Scholar 

  • Mastin LG (1984) The development of borehole breakouts in sandstone. Master’s thesis, Stanford University

  • Myer LR, Kemeny JM, Zheng Z, Suarez R, Ewy RT, Cook NGW (1992) Extensile cracking in porous rock under differential compressive stress. Appl Mech Rev 45(8):263–280. doi:10.1115/1.3119758

    Article  Google Scholar 

  • Nasseri M, Rezanezhad F, Young R (2011) Analysis of fracture damage zone in anisotropic granitic rock using 3D X-ray ct scanning techniques. Int J Fract 168(1):1–13. doi:10.1007/s10704-010-9551-0

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2012) Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech Rock Eng 45(4):607–617. doi:10.1007/s00603-012-0221-6

    Article  Google Scholar 

  • Olsson M, Markström I, Pettersson A, Sträng M (2009) Examination of the excavation damaged zone in the TASS tunnel, Äspö HRL. SKB R-09-39, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Patchett PJ, Todt W, Gorbatschev R (1987) Origin of continental crust of 1.9–1.7 Ga age: Nd isotopes in the Svecofennian orogenic terrains of Sweden. Precambrian Res 35:145–160. doi:10.1016/0301-9268(87)90050-7

    Article  Google Scholar 

  • Pinto C, Fonseca J (2013) Mechanical behavior of high strength granite for new prestressed stone structures. Int J Rock Mech Min Sci 60:452–460. doi:10.1016/j.ijrmms.2012.12.010

    Google Scholar 

  • Read RS (2004) 20 years of excavation response studies at aecl’s underground research laboratory. Int J Rock Mech Min Sci 41(8):1251–1275. doi:10.1016/j.ijrmms.2004.09.012

    Article  Google Scholar 

  • Read RS, Martin CD (1996) Technical summary of AECL’s mine-by experiment. Phase 1: excavation response. Report AECL-11311, Atomic Energy of Canada Limited

  • Seo YS, Jeong GC, Kim JS, Ichikawa Y (2002) Microscopic observation and contact stress analysis of granite under compression. Eng Geol 63:259–275. doi:10.1016/S0013-7952(01)00086-2

    Article  Google Scholar 

  • Staub I, Andersson JC, Magnor B (2004) Äspö pillar stability experiment. Geology and mechanical properties of the rock in TASQ. SKB R-04-01, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Valley B, Evans KF (2005) Stress estimates from analysis of breakouts and drilling-induced tension fractures in GPK1 and GPK4. In: EHDRA scientific conference, vol 1

  • Wahlgren CH, Ahl M, Sandahl KA, Berglund J, Petersson J, Ekström M, Persson PO (2004) Bedrock mapping 2003 - Simpevarp subarea. Outcrop data, fracture data, modal and geochemical classification of rock types, bedrock map, radiometric dating. Oskarshamn site investigation. SKB P-04-102, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Weed HC, Durham WB (1982) Drilling-induced borehole-wall damage at spent fuel test-climax. Tech. Rep. UCID-19672, U.S. DOE, Lawrence Livermore Laboratory, CA

  • Wong TF (1982) Micromechanics of faulting in westerly granite. Int J Rock Mech Min Sci Geomech Abstr 19(2):49–64. doi:10.1016/0148-9062(82)91631-X

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Nuclear Fuel and Waste Management Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Jacobsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobsson, L., Appelquist, K. & Lindkvist, J.E. Spalling Experiments on Large Hard Rock Specimens. Rock Mech Rock Eng 48, 1485–1503 (2015). https://doi.org/10.1007/s00603-014-0655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0655-0

Keywords

Navigation