Skip to main content
Log in

Piezonuclear Fission Reactions in Rocks: Evidences from Microchemical Analysis, Neutron Emission, and Geological Transformation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Neutron emission measurements, by means of He3 devices and bubble detectors, were performed during three different kinds of compression tests on brittle rocks: (1) under monotonic displacement control, (2) under cyclic loading, and (3) by ultrasonic vibration. The material used for the tests was Luserna Stone. Since the analyzed material contains iron, our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. This hypothesis is confirmed by the direct evidence of energy dispersive X-ray spectroscopy tests conducted on Luserna Stone specimens. It is also interesting to emphasize that the anomalous chemical balances of the major events that have affected the geomechanical and geochemical evolution of the Earth’s crust should be considered as an indirect evidence of the piezonuclear fission reactions considered above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aki K (1983) Strong motion seismology. In: Kanamori H and Boschi E (eds.) Earthquakes: observation, theory and interpretation, North-Holland Pub. Co., Amsterdam

  • Anbar AD (2008) Elements and evolution. Science 322:1481–1482

    Article  Google Scholar 

  • Basile-Doelsch I (2006) Si stable isotope in the Earth’s surface: a review. J Geochem Expl 88:252–256

    Article  Google Scholar 

  • Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Article  Google Scholar 

  • Bubble Technology Industries (1992) Instruction manual for the Bubble detector, Copyright Bubble Technology Industries, Chalk River, Ontario

  • Canfiled DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  Google Scholar 

  • Cardone F, Mignani R (2004) Energy and geometry, Chap. 10. World Scientific, Singapore

  • Cardone F, Mignani R (2006) Piezonuclear reactions and Lorentz invariance breakdown. Int J Mod Phys E Nucl Phys 15:911–924

    Article  Google Scholar 

  • Cardone F, Mignani R (2007) Deformed spacetime, Chaps. 16–17. Springer, Dordrecht

  • Cardone F, Carpinteri A, Lacidogna G (2009a) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163

    Article  Google Scholar 

  • Cardone F, Cherubini G, Petrucci A (2009b) Piezonuclear neutrons. Phys Lett A 373:862–866

    Article  Google Scholar 

  • Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solid 37:567–582

    Article  Google Scholar 

  • Carpinteri A (1990) A catastrophe theory approach to fracture mechanics. Int J Fract 44:57–69

    Article  Google Scholar 

  • Carpinteri A, Manuello A (2010) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain. doi:10.1111/j.1475-1305.2010.00766.x

  • Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339. Presented at the Turin Academy of Sciences on December 10, 2008. Proc of the Turin Academy of Sciences, Ser. V, 2010 33, 27–42

    Google Scholar 

  • Carpinteri A, Cardone F, Lacidogna G (2010a) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243

    Article  Google Scholar 

  • Carpinteri A, Borla O, Lacidogna G, Manuello A (2010b) Neutron emissions in brittle rocks during compression tests: monotonic vs cyclic loading. Phys Mesomech 13:268–274

    Article  Google Scholar 

  • Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2010c) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain. doi:10.1111/j.1475-1305.2010.00767.x

  • Carpinteri A, Lacidogna G, Manuello A and Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strenght Fract Complex. doi:10.3233/SFC-2011-0120

  • Catling CD, Zahnle KJ (2009) The planetary air leak. Sci Am 300(5):24–31

    Article  Google Scholar 

  • Compagnoni R, Crisci GM, Sandrone R (1983) Caratterizzazione chimica e petrografica degli‘‘gneiss di Luserna’’ (Massiccio cristallino Dora-Maira, Alpi Occidentali) Rend. Soc It Min Petr 38:498

    Google Scholar 

  • Condie KC (1976) Plate Tectonics and crustal evolution. Pergamon Press, New York

  • De la Rocha CL, Brzezinski M, De Niro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim et Cosmochim Acta 64(14):2467–2477

    Article  Google Scholar 

  • Doglioni C (2007) Interno della Terra, Treccani. Enciclopedia Scienza e Tecnica 595–605

  • Egami F (1975) Minor elements and evolution. J Mol Evol 4(2):113–120

    Article  Google Scholar 

  • Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:400–467

    Google Scholar 

  • Foing B (2005) Earth’s childhood attic. Astrobiological Magazine: Retrospection (on-line)

  • Fowler CMR (2005) The solid Earth: an introduction to global geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Galimov EM (2005) Redox evolution of the Earth caused by a multistage formation of its core. Earth Planet Sci Lett 233:263–276

    Article  Google Scholar 

  • Hazen et al (2008) Mineral evolution. Am Miner 93:1693–1720

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc London Ser B 361:903–915

    Article  Google Scholar 

  • Key Iron Deposits of the World. Available at http://www.portergeo.com.au/tours/iron2002/-iron2002depm2b.asp; last accessed October (2009)

  • Kholodov VN, Butuzova GY (2008) Siderite formation and evolution on sedimentary iron ore deposition in the Earth’s history. Geol Ore Depos 50(4):299–319

    Article  Google Scholar 

  • Konhauser KO et al (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–754

    Google Scholar 

  • Kuzhevskij BM, Nechaev YO, Sigaeva EA, Zakharov VA (2003a) Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Nat Hazards Earth Sys Sci 3:637–645

    Article  Google Scholar 

  • Kuzhevskij BM, Nechaev YO, Sigaeva EA (2003b) Distribution of neutrons near the Earth’s surface. Nat Hazards Earth Sys Sci 3:255–262

    Article  Google Scholar 

  • Liu L (2007) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Article  Google Scholar 

  • Lunine EJI (1998) Earth: evolution of a habitable world. Cambridge University Press, Melbourne

    Google Scholar 

  • National Council on Radiation Protection and Measurements (1971) Protection Against Neutron Radiation, NCRP Report 38

  • Natl Academy of Sciences (1975) Medical and biological effects of environmental pollutants: Nickel. Proc Natl Acad Sci, Washington D.C.

  • Padron E, Melian G, Marrero R, Nolasco D, Barrancos J, Padilla G, Hernandez PA, Perez NM (2008) Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure Appl Geophys 165:95–114

    Article  Google Scholar 

  • Ragueneau O et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365

    Article  Google Scholar 

  • Roy I, Sarkar BC, Chattopadhyay A (2001) MINFO-a prototype mineral information database for iron ore resourcers of India. Comp Geosci 27:357–361

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Saito MA (2009) Less nickel for more oxygen. Nature 458:714–715

    Article  Google Scholar 

  • Sandrone R, Cadoppi P, Sacchi R, Vialon P (1993) The Dora-Maira Massif. In: Von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin, pp 317–325

    Chapter  Google Scholar 

  • Sandrone R, Colombo A, Fiora L, Fornaro M, Lovera E, Tunesi A, Cavallo A (2004) Contemporary natural stones from the Italian western Alps (Piedmont and Aosta Valley regions). Period Miner (Special issue) 73:211–226

    Google Scholar 

  • Sigman D, Jaccard S, Hau F (2004) Polar ocean stratification in a cold climate. Nature 428:59–63

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265

    Article  Google Scholar 

  • Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Vola G, Marchi M (2010) Quantitative phase analysis (QPA) of the Luserna Stone. Period Miner 79(2):45–60

    Google Scholar 

  • Volodichev NN, Kuzhevskij BM, Nechaev OYu, Panasyuk MI, Podorolsky A, Shavrin PI (2000) Sun–Moon–Earth connections: the neutron intensity splashes and seismic activity. Astrons Vestnik 34(2):188–190

    Google Scholar 

  • World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-ore-producers.html; last accessed October (2009)

  • World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.htm; last accessed October (2009)

  • Yamaguchi KE (2005) Evolution of the geochemical cycle of Fe trough geological time: Iron isotope perspective. Frontier Res Earth Evol 2:4–24

    Google Scholar 

  • Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44(1):54–62

    Article  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Regione Piemonte (Italy) RE-FRESCOS Project is gratefully acknowledged. Special thanks are due to R. Sandrone and A. Chiodoni of the Politecnico di Torino for their kind collaboration in the EDS analysis. The authors wish to thank also D. Madonna Ripa and A. Troia from the National Research Institute of Metrology—INRIM, for their indispensable assistance during the ultrasonic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carpinteri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Lacidogna, G., Manuello, A. et al. Piezonuclear Fission Reactions in Rocks: Evidences from Microchemical Analysis, Neutron Emission, and Geological Transformation. Rock Mech Rock Eng 45, 445–459 (2012). https://doi.org/10.1007/s00603-011-0217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-011-0217-7

Keywords

Navigation