Skip to main content
Log in

Electric Properties of One-Neutron Halo Nuclei in Halo EFT

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We exploit the separation of scales in weakly-bound nuclei to compute E2 transitions and electric form factors in a halo effective field theory (EFT) framework. The relevant degrees of freedom are the core and the halo neutron. The EFT expansion is carried out in powers of \(R_{core}/R_{halo}\), where \(R_{core}\) and \(R_{halo}\) denote the length scales of the core and halo, respectively. We include the strong s-wave and d-wave interactions by introducing dimer fields. The dimer propagators are regulated by employing the power divergence subtraction scheme and matched to the effective range expansion in the respective channel. Electromagnetic interactions are included via minimal substitution in the Lagrangian. We demonstrate that, depending on the observable and respective partial wave, additional local gauge-invariant operators contribute in LO, NLO and higher orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Acharya, D.R. Phillips, 19 c in halo eft: effective-range parameters from coulomb dissociation experiments. Nucl. Phys. A 913, 103–115 (2013)

    Article  ADS  Google Scholar 

  2. F. Ajzenberg-Selove, Energy levels of light nuclei a = 13–15. Nucl. Phys. A 523(1), 1–196 (1991)

    Article  ADS  Google Scholar 

  3. S.I. Ando, Hypernuclei in halo/cluster effective field theory. Int. J. Mod. Phys. E 25(05), 1641,005 (2016)

    Article  Google Scholar 

  4. S.R. Beane, M.J. Savage, Rearranging pionless effective field theory. Nucl. Phys. A 694(3), 511–524 (2001)

    Article  ADS  MATH  Google Scholar 

  5. P.F. Bedaque, H.W. Hammer, U. Van Kolck, Narrow resonances in effective field theory. Phys. Lett. B 569(3), 159–167 (2003)

    Article  ADS  MATH  Google Scholar 

  6. C. Bertulani, H.W. Hammer, U. Van Kolck, Effective field theory for halo nuclei: shallow p-wave states. Nucl. Phys. A 712(1), 37–58 (2002)

    Article  ADS  Google Scholar 

  7. D.L. Canham, H.W. Hammer, Universal properties and structure of halo nuclei. Eur. Phys. J. A 37(3), 367–380 (2008)

    Article  ADS  Google Scholar 

  8. D.L. Canham, H.W. Hammer, Range corrections for two-neutron halo nuclei in effective theory. Nucl. Phys. A 836(3), 275–292 (2010)

    Article  ADS  Google Scholar 

  9. L. Fernando, A. Vaghani, G. Rupak, Electromagnetic form factors of one neutron halos with spin 1/2+ ground state (2015). arXiv:1511.04054

  10. H.W. Hammer, Few-body universality in halo nuclei. EPJ Web Conf. EDP Sci. 113, 01004 (2016)

    Article  Google Scholar 

  11. H.W. Hammer, D.R. Phillips, Electric properties of the beryllium-11 system in halo eft. Nucl. Phys. A 865(1), 17–42 (2011)

    Article  ADS  Google Scholar 

  12. R. Higa, H.W. Hammer, U. van Kolck, \(\alpha \alpha \) scattering in halo effective field theory. Nucl. Phys. A 809(3), 171–188 (2008)

    Article  ADS  Google Scholar 

  13. A. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Structure and reactions of quantum halos. Rev. Mod. Phys. 76(1), 215 (2004)

    Article  ADS  Google Scholar 

  14. D.B. Kaplan, M.J. Savage, M.B. Wise, A new expansion for nucleon–nucleon interactions. Phys. Lett. B 424(3), 390–396 (1998a)

    Article  ADS  Google Scholar 

  15. D.B. Kaplan, M.J. Savage, M.B. Wise, Two-nucleon systems from effective field theory. Nucl. Phys. B 534(1), 329–355 (1998b)

    Article  ADS  Google Scholar 

  16. G. Rupak, Radiative reactions in halo effective field theory. Int. J. Mod. Phys. E 25(05), 1641,004 (2016)

    Article  Google Scholar 

  17. G. Rupak, R. Higa, Model-independent calculation of radiative neutron capture on lithium-7. Phys. Rev. Lett. 106(22), 222,501 (2011)

    Article  Google Scholar 

  18. G. Rupak, L. Fernando, A. Vaghani, Radiative neutron capture on carbon-14 in effective field theory. Phys. Rev. C 86(4), 044,608 (2012)

    Article  Google Scholar 

  19. S. Typel, G. Baur, Electromagnetic strength of neutron and proton single-particle halo nuclei. Nucl. Phys. A 759(3), 247–308 (2005)

    Article  ADS  Google Scholar 

  20. X. Zhang, K.M. Nollett, D. Phillips, Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: The case of \({}^7 \text{Be}+ n \rightarrow {}^8 \text{B} +\gamma \). Phys. Rev. C 89(5), 051,602 (2014a)

    Article  Google Scholar 

  21. X. Zhang, K.M. Nollett, D.R. Phillips, Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: The case of \({}^7 \text{Li}+ n \rightarrow {}^8 \text{Li} +\gamma \). Phys. Rev. C 89(2), 024,613 (2014b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Braun.

Additional information

This article belongs to the Topical Collection “The 23rd European Conference on Few-Body Problems in Physics.

This work has been supported by Deutsche Forschungsgemeinschaft (SFB 1245).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, J., Hammer, HW. Electric Properties of One-Neutron Halo Nuclei in Halo EFT. Few-Body Syst 58, 94 (2017). https://doi.org/10.1007/s00601-017-1259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1259-5

Navigation