Skip to main content
Log in

Exactly Solvable \({\varvec{N}}\)-Body Quantum Systems with \(\varvec{N=3^k \ ( k}\) \(\ge \) \(\varvec{2)}\) in the \({\varvec{D=1}}\) Dimensional Space

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study the exact solutions of a particular class of N confined particles of equal mass, with \(N=3^k \ (k=2,3, \ldots ),\) in the \(D=1\) dimensional space. The particles are clustered in clusters of three particles. The interactions involve a confining mean field, two-body Calogero type of potentials inside the cluster, interactions between the centres of mass of the clusters and finally a non-translationally invariant N-body potential. The case of nine particles is exactly solved, in a first step, by providing the full eigensolutions and eigenenergies. Extending this procedure, the general case of N particles (\(N=3^k, \ k \ge 2\)) is studied in a second step. The exact solutions are obtained via appropriate coordinate transformations and separation of variables. The eigenwave functions and the corresponding energy spectrum are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calogero, F.: Ground state of a one-dimensional N-body system. J. Math. Phys. 10, 2197 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  2. Calogero, F.: Solution of the one-dimensional \(N\)-body-problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  3. Sutherland, B.: Quantum manybody problem in one dimension: ground state. J. Math. Phys. 12, 246 (1971)

    Article  ADS  Google Scholar 

  4. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4, 2019 (1971)

    Article  ADS  Google Scholar 

  5. Mattis, D.C.: The Many-Body Problem: 70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  6. Sutherland, B.: Beautiful Models. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  7. Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to lie algebras. Phys. Rep. 94, 6 (1983)

    Article  MathSciNet  Google Scholar 

  8. Albeverio, S., Dabrowski, L., Fei, S.-M.: A remark on one-dimensional many-body problems with point interactions. Int. J. Mod. Phys. B 14, 721 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Albeverio, S., Fei, S.-M., Kurasov, P.: On integrability of many-body problems with point interactions. In: Albeverio, S., Elander, N., Everitt, W.N., Kurasov, P. (eds) Operator Theory: Advances and Applications, vol. 132, pp. 67. Birkhäuser Verlag Basel, Switzerland (2002)

  10. Calogero, F.: Solution of a three-body problem in one dimension. J. Math. Phys. 10, 2191 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  11. Calogero, F., Marchioro, C.: Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials. J. Math. Phys. 15, 1425 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wolfes, J.: On the three body linear problem with three body interaction. J. Math. Phys. 15, 1420 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  13. Khare, A., Bhaduri, R.K.: Some algebraically solvable three-body problems in one dimension. J. Phys. A Math. Gen. 27, 2213 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Quesne, C.: Exactly solvable three-particle problem with three-body interaction. Phys. Rev. A 55, 3931 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Diaf, A., Kerris, A.T., Lassaut, M., Lombard, R.J.: A new model of the Calogero type. J. Phys. A Math. Gen. 39, 7305 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fehér, L., Tsutsui, I., Fulop, T.: Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables. Nucl. Phys. B 715, 713 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bachkhaznadji, A., Lassaut, M., Lombard, R.J.: A model of the Calogero type in the D-dimensional space. J. Phys. A Math. Theor. 40, 8791 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Meljanac, S., Samsarov, A., Basu-Mallick, B., Gupta, K.S.: Quantization and conformal properties of a generalized Calogero model. Eur. Phys. J. C 49, 875 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bachkhaznadji, A., Lassaut, M., Lombard, R.J.: A study of new solvable few body problems. J. Phys. A Math. Theor. 42, 065301 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wolfes, J.: On a one-dimensional four-body scattering system. Ann. Phys. 85, 454 (1974)

    Article  ADS  Google Scholar 

  21. Haschke, O., Rühl, W.: Construction of exactly solvable quantum models of Calogero and Sutherland type with translation invariant four-particle interactions. (1998). http://arxiv.org/abs/hep-th/9807194

  22. Gu, X.Y., Ma, Z.Q., Sun, J.Q.: Quantum four-body system in D dimensions. J. Math. Phys. 44, 3763 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bachkhaznadji, A., Lassaut, M.: Extending the four-body problem of Wolfes to non-translationaly invariant interactions. Few-Body Syst. 54, 1945 (2013)

    Article  ADS  Google Scholar 

  24. Bachkhaznadji, A., Lassaut, M.: Solvable few-body quantum problems. Few-Body Syst. 56, 1 (2015)

    Article  ADS  Google Scholar 

  25. Znojil, M.: Comment on “Conditionally exactly soluble class of quantum potentials”. Phys. Rev. A 61, 066101 (2000)

    Article  ADS  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 4. Academic, New-York (1978)

    MATH  Google Scholar 

  27. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  28. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  29. Basu-Mallick, B., Ghosh, P.K., Gupta, K.S.: Novel quantum states of the rational Calogero models without the confining interaction. Nucl. Phys. B 659, 437 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Giri, P.R., Gupta, K.S., Meljanac, S., Samsarov, A.: Electron capture and scaling anomaly in polar molecules. Phys. Lett. A 372, 2967 (2008)

    Article  ADS  MATH  Google Scholar 

  31. Case, K.M.: Singular potentials. Phys. Rev. 80, 797 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gupta, K.S., Rajeev, S.G.: Renormalization in quantum mechanics. Phys. Rev. D 48, 5940 (1993)

  33. Camblong, H.E., Epele, L.N., Fanchiotti, H., Canal Garcia, C.A.: Renormalization of the inverse square potential. Phys. Rev. Lett. 85, 1590 (2000)

    Article  ADS  Google Scholar 

  34. Yekken, R., Lassaut, M., Lombard, R.J.: Bound states of energy dependent singular potentials. Few-Body Syst. 54, 2113 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lassaut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachkhaznadji, A., Lassaut, M. Exactly Solvable \({\varvec{N}}\)-Body Quantum Systems with \(\varvec{N=3^k \ ( k}\) \(\ge \) \(\varvec{2)}\) in the \({\varvec{D=1}}\) Dimensional Space. Few-Body Syst 57, 773–791 (2016). https://doi.org/10.1007/s00601-016-1107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-016-1107-z

Keywords

Navigation