Skip to main content
Log in

Quantification of Entanglement Entropies for Doubly Excited States in Helium

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work, we study the quantum entanglement for doubly excited resonance states in helium by using highly correlated Hylleraas type functions to represent such states of the two-electron system. The doubly-excited resonance states are determined by calculation of density of resonance states under the framework of the stabilization method. The spatial (electron–electron orbital) entanglement measures for the low-lying doubly excited 2s 2, 2s3s, and 2p 2 1 S e states are carried out. Once a resonance state wave function is obtained, the linear entropy and von Neumann entropy for such a state are quantified using the Schmidt-Slater decomposition method. To check the consistence, linear entropy is also determined by solving analytically the needed four-electron (12-dimensional) integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University press, (2010)

  2. Tichy M.C., Mintert F., Buchleitner A.: Essential entanglement for atomic and molecular physics. J. Phys. B: At. Mol. Opt. Phys. 44, 192001 (2011)

    Article  ADS  Google Scholar 

  3. Moshinsky M.: How good is the Hartree-Fock approximation. Am. J. Phys. 36, 52 (1968)

    Article  ADS  Google Scholar 

  4. Amovilli C., March N.H.: Exact density matrix for a two-electron model atom and approximate proposals for realistic two-electron systems. Phys. Rev. A 67, 022509 (2003)

    Article  ADS  Google Scholar 

  5. Amovilli C., March N.H.: Quantum information: Jaynes and Shannon entropies in a two-electron entangled artificial atom. Phys. Rev. A 69, 054302 (2004)

    Article  ADS  Google Scholar 

  6. Nagy I., Pipek J.: Approximations for the inter-particle interaction energy in an exactly solvable two-electron model atom. Phys. Rev. A 81, 014501 (2010)

    Article  ADS  Google Scholar 

  7. Manzano D., Plastino A.R., Dehesa J.S., Koga T.: Quantum entanglement in two-electron atomic models. J. Phys. A: Math. Theor. 43, 275301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Coe J.P., D’Amico I.: The entanglement of few-particle systems when using the local-density approximation. J. Phys. Conf. Ser. 254, 012010 (2010)

    Article  ADS  Google Scholar 

  9. Yanez R.J., Plastino A.R., Dehesa J.S.: Quantum entanglement in a soluble two-electron model atom. Eur. Phys. J. D 56, 141 (2010)

    Article  ADS  Google Scholar 

  10. Coe J.P., Sudbery A., D’amico I.: Entanglement and density functional theory: testing approximations on Hooke’s atom. Phys. Rev. B 77, 205122 (2008)

    Article  ADS  Google Scholar 

  11. Koscik P., Hassanabadi H.: Entanglement in Hooke’s law atoms: an effect of the dimensionality of the space. Few-Body Syst. 52, 189 (2012)

    Article  ADS  Google Scholar 

  12. Abdullah S., Coe J.P., D’Amico I.: Effect of confinement potential geometry on entanglement in quantum dot-based nanostructures. Phys. Rev. B 80, 235302 (2009)

    Article  ADS  Google Scholar 

  13. Nazmitdinov R.G., Simonovic N.S., Plastino A.R., Chizhov A.V.: Shape transitions in excited states of two-electron quantum dots in a magnetic field. J. Phys. B: At. Mol. Opt. Phys. 45, 205503 (2012)

    Article  ADS  Google Scholar 

  14. Okopinska A., Koscik P.: Correlation and entanglement in elliptically deformed two-electron quantum dots. Few-Body Syst. 50, 413 (2011)

    Article  ADS  Google Scholar 

  15. Coden D.S.A., Romero R.H., Ferron A., Gomez S.S.: Impurity effects in two-electron coupled quantum dots: entanglement modulation. J. Phys. B: At. Mol. Opt. Phys. 46, 065501 (2013)

    Article  ADS  Google Scholar 

  16. Schroter S., Friedrich H., Madronero J.: Considerations on Hund’s first rule in a planar two-electron quantum dot. Phys. Rev. A 87, 042507 (2013)

    Article  ADS  Google Scholar 

  17. Dehesa J.S., Koga T., Yanez R.J., Plastino A.R., Esquivel R.O.: Quantum entanglement in helium. J. Phys. B: At. Mol. Opt. Phys. 45, 015504 (2012)

    Article  ADS  Google Scholar 

  18. Dehesa J.S., Koga T., Yanez R.J., Plastino A.R., Esquivel R.O.: Corrigendum: quantum entanglement in helium. J. Phys. B: At. Mol. Opt. Phys. 45, 239501 (2012)

    Article  ADS  Google Scholar 

  19. Osenda O., Serra P.: Scaling of the von Neumann entropy in a two electron system near the ionization threshold. Phys. Rev. A 75, 042331 (2007)

    Article  ADS  Google Scholar 

  20. Lin Y.-C., Lin C.-Y., Ho Y.K.: Spatial entanglement in two-electron atomic systems. Phys. Rev. A 87, 022316 (2013)

    Article  ADS  Google Scholar 

  21. Lin, Y.-C., Ho, Y.K.: Quantum entanglement for two electrons in the excited states of helium-like systems. Can. J. Phys. 93, 1–8 (2015)

  22. Benenti G., Siccardi S., Strini G.: Entanglement in helium. Euro. Phys. J. D 67, 1 (2013)

    Article  Google Scholar 

  23. Lin C.H., Lin Y.C., Ho Y.K.: Quantification of linear entropy for quantum entanglement in He, H and Ps ions using highly-correlated Hylleraas functions. Few-Body Syst. 54, 2147–2153 (2013)

    Article  ADS  Google Scholar 

  24. Lin C.H., Ho Y.K.: Quantification of entanglement entropy in helium by the Schmidt-Slater Decomposition Method. Few-Body Syst. 55, 1141–1149 (2014)

    Article  Google Scholar 

  25. Lin C.H., Ho Y.K.: Calculation of von Neumann entropy for hydrogen and positronium negative ions. Phys. Lett. A 378, 2861–2865 (2014)

    Article  ADS  MATH  Google Scholar 

  26. Koscik P.: Entanglement in S states of two-electron quantum dots with Coulomb impurities at the center. Phys. Lett. A 377, 2393 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Koscik P., Okopinska A.: Entanglement entropies in the ground states of helium-like atoms. Few-Body Syst. 55, 1151–1157 (2014)

    Article  Google Scholar 

  28. Huang Z., Wang H., Kais S.: Entanglement and electron correlation in quantum chemistry calculations. J. Mod. Opt. 53, 2543–2558 (2006)

    Article  ADS  Google Scholar 

  29. Hofer T.S.: On the basis set convergence of electron–electron entanglement measures: helium-like systems. Front. Chem. Theor. Comput. Chem. 1, 00024 (2013)

    ADS  Google Scholar 

  30. Mandelshtam V.A., Ravuri T.R., Taylor H.S.: Calculation of the density of resonance states using the stabilization method. Phys. Rev. Lett. 70, 1932 (1993)

    Article  ADS  Google Scholar 

  31. Tan S.S., Ho Y.K.: Determination of resonance energy and width by calculation of the density of resonance states using the stabilization method. Chin. J. Phys. 35, 701–707 (1997)

    Google Scholar 

  32. Chakraborty S., Ho Y.K.: Autoionization resonance states of two electron atomic systems with finite spherical confinement. Phys. Rev. A 84, 032515 (2011)

    Article  ADS  Google Scholar 

  33. Ho Y.K.: Recent advances in the theoretical methods and computational schemes for investigations of resonances in few-body atomic systems. Few-Body Syst. 54, 31–37 (2013)

    Article  ADS  Google Scholar 

  34. Ho Y.K.: Complex-coordinate calculations for doubly excited states of two-electron atoms. Phys. Rev. A 23, 2137–2149 (1981)

    Article  ADS  Google Scholar 

  35. Ho Y.K.: Doubly excited 1 S e states of helium atoms below the N th thresholds with N ≦ 6. Phys. Rev. A 34, 4402–4404 (1986)

    Article  ADS  Google Scholar 

  36. Burgers A., Wintgen D., Rost J.M.: Highly doubly excited S states of the helium atom. J. Phys. B: At. Mol. Opt. Phys. 28, 3163–3183 (1995)

    Article  ADS  Google Scholar 

  37. Ho Y.K.: The method of complex coordinate rotation and its applications to atomic collision processes. Phys. Rep. 99, 1–68 (1983)

    Article  ADS  Google Scholar 

  38. Restrepo J.P., Sanz-Vicario J.L.: An analysis of helium resonant states in terms of entropy, information, complexity and entanglement measures. J. Phys. Conf Ser 488, 152004 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Hao Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Ho, Y.K. Quantification of Entanglement Entropies for Doubly Excited States in Helium. Few-Body Syst 56, 157–163 (2015). https://doi.org/10.1007/s00601-015-0972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0972-1

Keywords

Navigation