Skip to main content

Advertisement

Log in

Immunoevasion rather than intrinsic oncogenicity may confer MSCs from non-obese diabetic mice the ability to generate neural tumors

  • Short Communication
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Le Blanc K, Frassoni F, Locatelli F et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  2. Jurewicz M, Yang S, Augello A et al (2010) Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 59:3139–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ben Nasr M, Vergani A, Avruch J et al (2015) Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 52:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D’Addio F, Trevisani A, Ben Nasr M et al (2014) Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol 51:897–904

    Article  PubMed  Google Scholar 

  5. Fiorina P, Jurewicz M, Vergani A et al (2011) Targeting the CXCR4–CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via programmed death ligand 1. J Immunol 186:121–131

    Article  CAS  PubMed  Google Scholar 

  6. Abdi R, Fiorina P, Adra CN et al (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim N, Cho S-G (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28:387–402

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ben Nasr M, D’Addio F, Usuelli V et al (2015) The rise, fall, and resurgence of immunotherapy in type 1 diabetes. Pharmacol Res 98:31–38

    Article  CAS  PubMed  Google Scholar 

  9. Djouad F, Plence P, Bony C et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844

    Article  CAS  PubMed  Google Scholar 

  10. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  11. Fiorina P, Voltarelli J, Zavazava N (2011) Immunological applications of stem cells in type 1 diabetes. Endocr Rev 32:725–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fiorina P, Jurewicz M, Augello A et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giovannucci E, Harlan DM, Archer MC et al (2010) Diabetes and cancer: a consensus report. Diabetes Care 33:1674–1685

    Article  PubMed  PubMed Central  Google Scholar 

  14. El Haddad N, Heathcote D, Moore R et al (2011) Mesenchymal stem cells express serine protease inhibitor to evade the host immune response. Blood 117:1176–1183

    Article  Google Scholar 

  15. Fiorina P, Vergani A, Dada S et al (2008) Targeting CD22 reprograms b-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keng VW, Rahrmann EP, Watson AL et al (2012) PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Res 72:3405–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitman M, Downes CP, Keeler M et al (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646

    Article  CAS  PubMed  Google Scholar 

  18. Folli F, Saad MJA, Backer JM, Kahn CR (1992) Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem 267:22171–22177

    CAS  PubMed  Google Scholar 

  19. Folli F, Saad MJ, Backer JM, Kahn CR (1993) Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F (2016) Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 12:595–609

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Francesca D’Addio is the recipient of a Società Italiana di Diabetologia (SID) Lombardia Grant and of the European Foundation for the Study of Diabetes/European Association for the Study of Diabetes (EFSD/EASD) Rising Star Fellowship grant. Paolo Fiorina is the recipient of an European Foundation for the Study of Diabetes (EFSD)/Sanofi European Research Programme and is supported by an American Heart Association (AHA) Grant-in-Aid. Reza Abdi is the recipient of an American Diabetes Association (ADA) Basic Science Award (1-14-BS-001). We thank Fondazione 'Romeo and Enrica Invernizzi' for the support.

Author’s contribution

C.L. and R.F.M. designed the study, performed experiments, analyzed data and wrote the paper; M.B.N., S.D., M.B., M.M., V.U., B.E.E., F.D.A., A.O.S.-R. and S.P. performed experiments and analyzed data; G.V.Z. coordinated research; P.F. and R.A. designed the study, provided financial support, wrote and edited the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Fiorina or Reza Abdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical disclosure

Principles of laboratory animal care (NIH publication No. 86-23, revised 1985) were followed, as well as all applicable institutional guidelines for the care and use of experimental animals.

Informed consent

This study does not involve human subjects. No informed consent needs to be obtained.

Additional information

Managed by Massimo Federici.

Cristian Loretelli and Robert F. Moore contributed equally to this study and are considered co-first authors.

Paolo Fiorina and Reza Abdi should be considered senior co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loretelli, C., Moore, R.F., Ben Nasr, M. et al. Immunoevasion rather than intrinsic oncogenicity may confer MSCs from non-obese diabetic mice the ability to generate neural tumors. Acta Diabetol 54, 707–712 (2017). https://doi.org/10.1007/s00592-017-0967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0967-0

Keywords

Navigation