Skip to main content

Advertisement

Log in

Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

An Erratum to this article was published on 11 October 2016

Abstract

Aims

EMPAREG OUTCOME study showed a reduction in cardiovascular events in patients treated with the sodium-glucose transporter 2 inhibitor (SGLT2i) empagliflozin, as compared to placebo. Other drugs of the same class are currently been investigated for cardiovascular outcomes. In the meanwhile, a re-analysis of data collected in available studies can add relevant insight.

Methods

A MEDLINE search for SGLT-2 inhibitors (dapagliflozin, empagliflozin, canagliflozin, ipragliflozin, ertugliflozin, luseogliflozin) was performed, collecting all randomized trials up to November 16, 2015. All trials with a duration of treatment ≥12 weeks, enrolling patients with type 2 diabetes, comparing a SGLT2i with placebo or other comparators were included. The principal outcome was the effect of SGLT2i on all-cause and cardiovascular mortality. Secondary endpoints were myocardial infarction and stroke. Mantel–Haenszel odds ratio with 95 % confidence interval (MH-OR) was calculated.

Results

A total of 71 trials were included (31,199 and 16,088 patients in SGLT2i and comparator groups). Treatment with SGLT2i was associated with a significant reduction in all-cause mortality (MH-OR 0.70 [0.59–0.83], p < 0.001), cardiovascular mortality (MH-OR 0.43 [0.36–0.53], p < 0.001), and myocardial infarction (MH-OR 0.77 [0.63–0.94], p < 0.01), but not stroke (MH-OR 1.09 [0.86–1.38], p = 0.50), with no apparent difference across molecules (after excluding cardiovascular outcome trials).

Conclusions

Available data suggest that the beneficial action observed with empagliflozin on all-cause and cardiovascular mortality in EMPAREG OUTCOME study is a class effect. The present meta-analysis showed a significantly reduction in myocardial infarction, with no increased risk of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  PubMed  Google Scholar 

  2. Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    Article  CAS  PubMed  Google Scholar 

  3. White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  CAS  PubMed  Google Scholar 

  4. Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242

    Article  CAS  PubMed  Google Scholar 

  5. Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257

    Article  CAS  PubMed  Google Scholar 

  6. Ceriello A, Genovese S, Mannucci E, Gronda E (2015) Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol 3:929–930

    Article  PubMed  Google Scholar 

  7. Gilbert RE, Connelly KA (2015) Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol 3:930–931

    Article  PubMed  Google Scholar 

  8. Muskiet MH, van Raalte DH, van Bommel E, Smits MM, Tonneijck L (2015) Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol 3:928–929

    Article  PubMed  Google Scholar 

  9. CANVAS—CANagliflozin cardioVascular Assessment Study. https://www.clinicaltrial.gov/ct2/show/NCT01032629?term=canvas&rank=1. Last accessed 25 Jan 2016

  10. Multicenter trial to evaluate the effect of dapagliflozin on the incidence of cardiovascular events (DECLARE-TIMI58). https://www.clinicaltrial.gov/ct2/show/NCT01730534?term=declare+dapagliflozin&rank=1. Last accessed 25 Jan 2016

  11. Cardiovascular outcomes following treatment with ertugliflozin in participants with type 2 diabetes mellitus and established vascular disease (MK-8835-004). https://www.clinicaltrial.gov/ct2/show/NCT01986881?term=ertugliflozin+cardiovascular&rank=1. Last accessed 25 Jan 2016

  12. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000MedR.pdf. Last accessed 25 Jan 2016

  13. Wu JH, Foote C, Blomster J et al (2016) Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 4:411–419

    Article  CAS  PubMed  Google Scholar 

  14. http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015029573. Last accessed 25 Jan 2016

  15. www.fda.gov. Last accessed on 25 Jan 2016

  16. www.ema.europa.eu. Last accessed on 25 Jan 2016

  17. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  18. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  20. Solini A (2016) Role of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus. Acta Diabetol. (Epub ahead of print)

  21. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002649/WC500156457.pdf. Last accessed on 25 Jan 2016

  22. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002677/WC500168592.pdf. Last accessed 25 Jan 2016

  23. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204629Orig1s000MedR.pdf. Last accessed 25 Jan 2016

  24. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002322/WC500136026.pdf. Last accessed 25 Jan 2016

  25. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/202293Orig1s000MedR.pdf. Last accessed 25 Jan 2016

  26. Savarese G, D’Amore C, Federici M et al (2016) Effects of dipeptidyl peptidase 4 inhibitors and sodium-glucose linked cotransporter-2 inhibitors on cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis. Int J Cardiol 220:595–601

    Article  PubMed  Google Scholar 

  27. Monami M, Genovese S, Mannucci E (2013) Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 15:938–953

    Article  CAS  PubMed  Google Scholar 

  28. Monami M, Ragghianti B, Zannoni S, Vitale V, Nreu B, Mannucci E (2016) Identification of predictors of response to basal insulin and DPP4 inhibitors in patients with type 2 diabetes failing to other therapies. Acta Diabetol 53:35–40

    Article  CAS  PubMed  Google Scholar 

  29. Kim SC, Glynn RJ, Liu J, Everett BM, Goldfine AB (2014) Dipeptidyl peptidase-4 inhibitors do not increase the risk of cardiovascular events in type 2 diabetes: a cohort study. Acta Diabetol 51:1015–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM339293.pdf. Last accessed 25 Jan 2016

  31. Mahaffey KW, Roe MT, Dyke CK et al (2002) Misreporting of myocardial infarction end points: results of adjudication by a central clinical events committee in the PARAGON-B trial. Second Platelet IIb/IIIa Antagonist for the Reduction of Acute Coronary Syndrome Events in a Global Organization Network Trial. Am Heart J 143:242–248

    Article  PubMed  Google Scholar 

  32. Rosenstock J, Aggarwal N, Polidori D et al (2012) Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35:1232–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inagaki N, Kondo K, Yoshinari T, Maruyama N, Susuta Y, Kuki H (2013) Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab 15:1136–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sha S, Polidori D, Heise T et al (2014) Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 16:1087–1095

    Article  CAS  PubMed  Google Scholar 

  35. Fulcher G, Matthews DR, Perkovic V et al (2015) Efficacy and safety of canagliflozin used in conjunction with sulfonylurea in patients with type 2 diabetes mellitus: a randomized, controlled trial. Diabetes Ther 6:289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ji L, Han P, Liu Y et al (2015) Canagliflozin in Asian patients with type 2 diabetes on metformin alone or metformin in combination with sulphonylurea. Diabetes Obes Metab 17:23–31

    Article  CAS  PubMed  Google Scholar 

  37. Neal B, Perkovic V, de Zeeuw D et al (2015) Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care 38:403–411

    Article  CAS  PubMed  Google Scholar 

  38. Inagaki N, Kondo K, Yoshinari T, Takahashi N, Susuta Y, Kuki H (2014) Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, Phase III study. Expert Opin Pharmacother 15:1501–1515

    Article  CAS  PubMed  Google Scholar 

  39. Forst T, Guthrie R, Goldenberg R et al (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 16:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stenlöf K, Cefalu WT, Kim KA et al (2014) Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: findings from the 52-week CANTATA-M study. Curr Med Res Opin 30:163–175

    Article  PubMed  Google Scholar 

  41. Wilding JP, Charpentier G, Hollander P et al (2013) Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 67:1267–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weir MR, Kline I, Xie J, Edwards R, Usiskin K (2014) Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin 30:1759–1768

    Article  CAS  PubMed  Google Scholar 

  43. Lavalle-González FJ, Januszewicz A, Davidson J et al (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56:2582–2592

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bode B, Stenlöf K, Sullivan D, Fung A, Usiskin K (1995) Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract 2013(41):72–84

    Google Scholar 

  45. Schernthaner G, Gross JL, Rosenstock J et al (2013) Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 36:2508–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cefalu WT, Leiter LA, Yoon KH et al (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950

    Article  CAS  PubMed  Google Scholar 

  47. .https://clinicaltrials.gov/ct2/show/NCT01340664?term=NCT01340664&rank=1

  48. Kaku K, Inoue S, Matsuoka O et al (2013) Efficacy and safety of dapagliflozin as a monotherapy for type 2 diabetes mellitus in Japanese patients with inadequate glycaemic control: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 15:432–440

    Article  CAS  PubMed  Google Scholar 

  49. List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657

    Article  CAS  PubMed  Google Scholar 

  50. Wilding JP, Woo V, Soler NG et al (2012) Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 156:405–415

    Article  PubMed  Google Scholar 

  51. Lambers HHJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862

    Article  Google Scholar 

  52. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A (2015) Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. (Epub ahead of print)

  53. Mudaliar S, Henry RR, Boden G et al (2014) List J.AChanges in insulin sensitivity and insulin secretion with the sodium glucose cotransporter 2 inhibitor dapagliflozin. Diabetes Technol Ther 16:137–144

    Article  CAS  PubMed  Google Scholar 

  54. https://clinicaltrials.gov/ct2/show/NCT01137474?term=NCT01137474&rank=1

  55. Schumm-Draeger PM, Burgess L, Korányi L, Hruba V, Hamer-Maansson JE, de Bruin TW (2015) Twice-daily dapagliflozin co-administered with metformin in type 2 diabetes: a 16-week randomized, placebo-controlled clinical trial. Diabetes Obes Metab 17:42–51

    Article  CAS  PubMed  Google Scholar 

  56. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF (2012) Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract 66:446–456

    Article  CAS  PubMed  Google Scholar 

  57. Rosenstock J, Hansen L, Zee P et al (2015) Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care 38:376–383

    Article  CAS  PubMed  Google Scholar 

  58. Bailey CJ, Iqbal N, T’joen C, List JF (2012) Dapagliflozin monotherapy in drug-naïve patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 14:951–959

    Article  CAS  PubMed  Google Scholar 

  59. Jabbour SA, Hardy E, Sugg J, Parikh S, Study 10 Group (2014) Dapagliflozin is effective as add-on therapy to sitagliptin with or without metformin: a 24-week, multicenter, randomized, double-blind, placebo-controlled study. Diabetes Care 37:740–750

    Article  CAS  PubMed  Google Scholar 

  60. Mathieu C, Ranetti AE, Li D et al (2015) Randomized, double-blind, Phase 3 Trial of Triple Therapy with Dapagliflozin Add-on to Saxagliptin Plus Metformin in Type 2 Diabetes. Diabetes Care 38:2009–2017

    Article  PubMed  Google Scholar 

  61. Kaku K, Kiyosue A, Inoue S et al (2014) Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab 16:1102–1110

    Article  CAS  PubMed  Google Scholar 

  62. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S (2011) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 13:928–938

    Article  CAS  PubMed  Google Scholar 

  63. Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2015) Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care 38:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ji L, Ma J, Li H, Mansfield TA et al (2014) Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study. Clin Ther 36:84–100

    Article  CAS  PubMed  Google Scholar 

  65. Yang W, Han P, Min KW et al (2015) Efficacy and safety of dapagliflozin in Asian patients with type 2 diabetes after metformin failure: a randomized controlled trial. J Diabetes. (Epub ahead of print)

  66. Rosenstock J, Vico M, Wei L, Salsali A, List JF (2012) Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 35:1473–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matthaei S, Bowering K, Rohwedder K, Grohl A, Parikh S, Study 05 Group (2015) Dapagliflozin improves glycemic control and reduces body weight as add-on therapy to metformin plus sulfonylurea: a 24-week randomized, double-blind clinical trial. Diabetes Care 38:365–372

    Article  CAS  PubMed  Google Scholar 

  68. Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2014) Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc 62:1252–1262

    Article  PubMed  Google Scholar 

  69. Bolinder J, Ljunggren Ö, Johansson L et al (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16:159–169

    Article  CAS  PubMed  Google Scholar 

  70. Bailey CJ, Morales Villegas EC, Woo V, Tang W, Ptaszynska A, List JF (2015) Efficacy and safety of dapagliflozin monotherapy in people with Type 2 diabetes: a randomized double-blind placebo-controlled 102-week trial. Diabet Med 32:531–541

    Article  CAS  PubMed  Google Scholar 

  71. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233

    Article  CAS  PubMed  Google Scholar 

  72. Kohan DE, Fioretto P, Tang W, List JF (2014) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 85:962–971

    Article  CAS  PubMed  Google Scholar 

  73. Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S, Dapagliflozin 006 Study Group (2014) Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 16:124–136

    Article  CAS  PubMed  Google Scholar 

  74. Nauck MA, Del Prato S, Durán-García S et al (2014) Durability of glycaemic efficacy over 2 years with dapagliflozin versus glipizide as add-on therapies in patients whose type 2 diabetes mellitus is inadequately controlled with metformin. Diabetes Obes Metab 16:1111–1120

    Article  CAS  PubMed  Google Scholar 

  75. Ferrannini E, Berk A, Hantel S et al (2013) Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care 36:4015–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosenstock J, Seman LJ, Jelaska A et al (2013) Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type 2 diabetes with mild hyperglycaemia. Diabetes Obes Metab 15:1154–1160

    Article  CAS  PubMed  Google Scholar 

  77. Kadowaki T, Haneda M, Inagaki N et al (2015) Efficacy and safety of empagliflozin monotherapy for 52 weeks in Japanese patients with type 2 diabetes: a randomized, double-blind, parallel-group study. Adv Ther 32:306–318

    Article  CAS  PubMed  Google Scholar 

  78. Tikkanen I, Narko K, Zeller C et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38:420–428

    Article  CAS  PubMed  Google Scholar 

  79. https://clinicaltrials.gov/ct2/show/NCT01649297?term=NCT01649297&rank=1

  80. Häring HU, Merker L, Seewaldt-Becker E et al (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36:3396–3404

    Article  PubMed  PubMed Central  Google Scholar 

  81. Roden M, Weng J, Eilbracht J et al (2013) Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 1:208–219

    Article  CAS  PubMed  Google Scholar 

  82. Barnett AH, Mithal A, Manassie J et al (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384

    Article  CAS  PubMed  Google Scholar 

  83. Rosenstock J, Jelaska A, Frappin G et al (2014) Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 37:1815–1823

    Article  CAS  PubMed  Google Scholar 

  84. DeFronzo RA, Lewin A, Patel S et al (2015) Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin. Diabetes Care 38:384–393

    Article  CAS  PubMed  Google Scholar 

  85. Lewin A, DeFronzo RA, Patel S et al (2015) Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care 3:394–402

    Article  Google Scholar 

  86. Kovacs CS, Seshiah V, Swallow R et al (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16:147–158

    Article  CAS  PubMed  Google Scholar 

  87. Merker L, Häring HU, Christiansen AV et al (2015) Empagliflozin as add-on to metformin in people with Type 2 diabetes. Diabet Med 32:1555–1567

    Article  CAS  PubMed  Google Scholar 

  88. Rosenstock J, Jelaska A, Zeller C et al (2015) Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 17:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Araki E, Tanizawa Y, Tanaka Y et al (2015) Long-term treatment with empagliflozin as add-on to oral antidiabetes therapy in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab 17:665–674

    Article  CAS  PubMed  Google Scholar 

  90. Ridderstråle M, Andersen KR et al (2014) Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2:691–700

    Article  PubMed  Google Scholar 

  91. Amin NB, Wang X, Mitchell JR, Lee DS, Nucci G, Rusnak JM (2015) Blood pressure-lowering effect of the sodium glucose co-transporter-2 inhibitor ertugliflozin, assessed via ambulatory blood pressure monitoring in patients with type 2 diabetes and hypertension. Diabetes Obes Metab 17:805–808

    Article  CAS  PubMed  Google Scholar 

  92. Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, Houzer A (2013) Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab 15:403–409

    Article  CAS  PubMed  Google Scholar 

  93. Fonseca VA, Ferrannini E, Wilding JP et al (2013) Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. J Diabetes Complic 27:268–273

    Article  Google Scholar 

  94. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E, Utsuno A (2015) Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab 17:304–308

    Article  CAS  PubMed  Google Scholar 

  95. Kashiwagi A, Takahashi H, Ishikawa H et al (2015) A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab 17:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kashiwagi A, Kazuta K, Yoshida S, Nagase I (2014) Randomized, placebo-controlled, double-blind glycemic control trial of novel sodium-dependent glucose cotransporter 2 inhibitor ipragliflozin in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig 5:382–391

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was performed independently of any funding, as part of the institutional activity of the investigators.

Authors contribution

Matteo Monami designed the study, collected the data, performed the analysis, and wrote the manuscript. Ilaria Dicembrini collected the data and revised the manuscript. Edoardo Mannucci designed the study, collected the data, performed the analysis, and wrote the manuscript. All the authors approved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Monami.

Ethics declarations

Conflict of interest

Matteo Monami has received speaking fees from Bristol Myers Squibb, Eli-Lilly, Merck, Novonordisk, Merck, and Takeda; and research grants from Bristol Myers Squibb. Ilaria Dicembrini has no conflicts of interest. Edoardo Mannucci has received consultancy fees from Merck and Novartis; speaking fees from Astra Zeneca, Bristol Myers Squibb, Merck, and Novartis; and research grants from Merck, Novartis, and Takeda.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

An erratum to this article is available at http://dx.doi.org/10.1007/s00592-016-0922-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monami, M., Dicembrini, I. & Mannucci, E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetol 54, 19–36 (2017). https://doi.org/10.1007/s00592-016-0892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0892-7

Keywords

Navigation