Skip to main content

Advertisement

Log in

Is diabetes a hypercoagulable state? A critical appraisal

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM), a chronic disease with an increasing incidence and prevalence worldwide, is an established risk factor for arterial cardiovascular, cerebrovascular and peripheral vascular diseases including acute myocardial infarction, stroke and peripheral artery disease. On the other hand, its role as independent risk factor for venous thromboembolism (VTE) and for cardioembolic stroke or systemic embolism (SE) in patients with atrial fibrillation (AF) is more conflicting. Venous and arterial thromboses have traditionally been regarded as separate diseases, but recent studies have documented an association between these vascular complications. Cardiovascular risk factors may contribute to unprovoked VTE, and VTE may be an early symptomatic event in patients at high cardiovascular risk, including diabetic patients. Compelling evidences suggest that DM is associated with a higher risk of development and progression of AF. Furthermore, in AF patients with a coexisting DM the risk of cardioembolic stroke/SE appeared increased. Thus, DM has been included as one of the items of the CHADS2 score and of the subsequent CHA2DS2-VASc score that have been developed to assess the arterial tromboembolic risk of AF patients. Such a high incidence of thromboembolic events observed in these clinical subsets may be attributable to the DM-related prothrombotic state due to a number of changes in primary and secondary hemostasis. Although of potential clinical interest, unfortunately, to date, no study has properly evaluated the effects of drugs used to control blood glucose levels on the risk of venous thromboembolism and arterial cardioembolic events in patients with DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prandoni P, Bilora F, Marchiori A et al (2003) An association between atherosclerosis and venous thrombosis. N Engl J Med 348:1435–1441

    Article  PubMed  Google Scholar 

  2. Prandoni P (2007) Links between arterial and venous disease. J Intern Med 262:341–350

    Article  CAS  PubMed  Google Scholar 

  3. Cushman M, Kuller LH, Prentice R, Rodabough RJ, Psaty BM, Stafford RS, Sidney S, Rosendaal FR (2004) Women’s Health Initiative Investigators. Estrogen plus progestin and risk of venous thrombosis. JAMA 292:1573–1580

    Article  CAS  PubMed  Google Scholar 

  4. Deguchi H, Pecheniuk NM, Elias DJ et al (2005) High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation 112:893–899

    Article  CAS  PubMed  Google Scholar 

  5. Lidegaard Ø, Edström B, Kreiner S (2002) Oral contraceptives and venous thromboembolism: a five-year national case-control study. Contraception 65:187–196

    Article  CAS  PubMed  Google Scholar 

  6. World Health Organization Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception (1995) Venous thromboembolic disease and combined oral contraceptives: results of international multicentre case-control study. Lancet 346:1575–1582

    Article  Google Scholar 

  7. McColl MD, Sattar N, Ellison J et al (2000) Lipoprotein (a), cholesterol and triglycerides in women with venous thromboembolism. Blood Coagul Fibrinolysis 11:225–229

    CAS  PubMed  Google Scholar 

  8. Frederiksen J, Juul K, Grande P et al (2004) Methylenetetrahydrofolatereductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 104:3046–3051

    Article  CAS  PubMed  Google Scholar 

  9. Zoni-Berisso M, Filippi A, Landolina M et al (2013) Frequency, patient characteristics, treatment strategies, and resource usage of atrial fibrillation (from the Italian Survey of Atrial Fibrillation Management [ISAF] study). Am J Cardiol 1(111):705–711

    Article  Google Scholar 

  10. Camm AJ, Lip GY, De Caterina R et al (2012) 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 33:2719–2747

    Article  PubMed  Google Scholar 

  11. Heit JA, Leibson CL, Ashrani AA et al (2009) Is diabetes mellitus an independent risk factor for venous thromboembolism? A population-based case-control study. Arterioscler Thromb Vasc Biol 29:1399–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stein PD, Goldman J, Matta F et al (2009) Diabetes mellitus and risk of venous thromboembolism. Am J Med Sci 337:259–264

    Article  PubMed  Google Scholar 

  13. Petrauskiene V, Falk M, Waernbaum I et al (2005) The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia 48:1017–1021

    Article  CAS  PubMed  Google Scholar 

  14. Høibraaten E, Abdelnoor M, Sandset PM (1999) Hormone replacement therapy with estradiol and risk of venous thromboembolism-a population-based case-control study. Thromb Haemost 82:1218–1221

    PubMed  Google Scholar 

  15. Tsai AW, Cushman M, Rosamond WD et al (2002) Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thromboembolism etiology. Arch Intern Med 162:1182–1189

    Article  PubMed  Google Scholar 

  16. Vayá A, Martínez-Triguero ML, España F et al (2011) The metabolic syndrome and its individual components: its association with venous thromboembolism in a Mediterranean population. Metab Syndr Relat Disord 9:197–201

    Article  PubMed  Google Scholar 

  17. Steffen LM, Cushman M, Peacock JM et al (2009) Metabolic syndrome and risk of venous thromboembolism: longitudinal investigation of thromboembolism etiology. J Thromb Haemost 7:746–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Di Minno MN, Tufano A, Guida A et al (2011) Abnormally high prevalence of major components of the metabolic syndrome in subjects with early-onset idiopathic venous thromboembolism. Thromb Res 127:193–197

    Article  PubMed  Google Scholar 

  19. Prandoni P (2007) Links between arterial and venous disease. J Intern Med 262:341–350

    Article  CAS  PubMed  Google Scholar 

  20. Ageno W, Becattini C, Brighton T et al (2008) Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 117:93–102

    Article  PubMed  Google Scholar 

  21. Van Schouwenburg IM, Mahmoodi BK, Veeger NJ et al (2012) Insulin resistance and risk of venous thromboembolism: results of a population-based cohort study. J Thromb Haemost 10:1012–1018

    Article  PubMed  Google Scholar 

  22. Delluc A, De Moreuil C, Kerspern H et al (2013) Body mass index, a major confounder to insulin resistance association with unprovoked venous thromboembolism. Results from the EDITH case-control study. Thromb Haemost 110:593–597

    Article  CAS  PubMed  Google Scholar 

  23. Dublin S, Glazer NL, Smith NL et al (2010) Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J Gen Intern Med 25:853–858

    Article  PubMed Central  PubMed  Google Scholar 

  24. Huxley RR, Alonso A, Lopez FL et al (2012) Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study. Heart 98:133–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huxley RR, Filion KB, Konety S et al (2011) Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol 108:56–62

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lip GY, Varughese GI (2005) Diabetes mellitus and atrial fibrillation: perspectives on epidemiological and pathophysiological links. Int J Cardiol 105:319–321

    Article  PubMed  Google Scholar 

  27. Gage BF, Waterman AD, Shannon W et al (2001) Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285:2864–2870

    Article  CAS  PubMed  Google Scholar 

  28. Lip GY, Nieuwlaat R, Pisters R et al (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137:263–272

    Article  PubMed  Google Scholar 

  29. Stroke Risk in Atrial Fibrillation Working Group (2007) Independent predictors of stroke in patients with atrial fibrillation: a systematic review. Neurology 69:546–554

    Article  Google Scholar 

  30. Laupacis A (1994) Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med 154:1449–1457

    Article  Google Scholar 

  31. Hart RG, Pearce LA, McBride R et al (1999) Factors associated with ischemic stroke during aspirin therapy in atrial fibrillation: analysis of 2012 participants in the SPAF I-III clinical trials. The stroke prevention in atrial fibrillation (SPAF) investigators. Stroke 30:1223–1229

    Article  CAS  PubMed  Google Scholar 

  32. Wang TJ, Massaro JM, Levy D et al (2003) A risk score for predicting stroke or death in individuals with newonset atrial fibrillation in the community: the Framingham Heart Study. J Am Med Assoc 290:1049–1056

    Article  Google Scholar 

  33. Atrial fibrillation investigators (1998) Echocardiographic predictors of stroke in patients with atrial fibrillation: a prospective study of 1066 patients from 3 clinical trials. Arch Intern Med 158:1316–1320

    Article  Google Scholar 

  34. Seidl K, Hauer B, Schwick NG et al (1998) Risk of thromboembolic events in patients with atrial flutter. Am J Cardiol 82:580–583

    Article  CAS  PubMed  Google Scholar 

  35. The SPAF III Writing Committee for the Stroke Prevention in Atrial Fibrillation Investigators (1998) Patients with nonvalvular atrial fibrillation at low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study. The SPAF III Writing Committee for the Stroke Prevention in Atrial Fibrillation Investigators. JAMA 279:1273–1277

    Article  Google Scholar 

  36. Petersen P, Kastrup J, Helweg-Larsen S et al (1990) Risk factors for thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Arch Intern Med 150:819–821

    Article  CAS  PubMed  Google Scholar 

  37. Aronow WS, Ahn C, Kronzon I et al (1998) Risk factors for new thromboembolic stroke in patients ≤62 years of age with chronic atrial fibrillation. Am J Cardiol 82:119–121

    Article  CAS  PubMed  Google Scholar 

  38. Stollberger C, Chnupa P, Abzieher C et al (2004) Mortality and rate of stroke or embolism in atrial fibrillation during long-term follow-up in the embolism in left atrial thrombi (ELAT) study. Clin Cardiol 27:40–46

    Article  PubMed  Google Scholar 

  39. Di Minno MN, Tufano A, Ageno W et al (2012) Identifying high-risk individuals for cardiovascular disease: similarities between venous and arterial thrombosis in perspective. A 2011 update. Intern Emerg Med 7:9–13

    Article  PubMed  Google Scholar 

  40. Nomura S (2009) Dynamic role of microparticles in type 2 diabetes mellitus. Curr Diabetes Rev 5:245–251

    Article  CAS  PubMed  Google Scholar 

  41. Vinik AI, Erbas T, Park TS et al (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24:1476–1485

    Article  CAS  PubMed  Google Scholar 

  42. Davì G, Patrono C (2007) Platelet Activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  PubMed  Google Scholar 

  43. Di Minno MN, Lupoli R, Palmieri NM et al (2012) Aspirin resistance, platelet turnover, and diabetic angiopathy: a 2011 update. Thromb Res 129:341–344

    Article  PubMed  Google Scholar 

  44. Tschöpe D, Schwippert B, Schettler B et al (1992) Increased GPIIB/IIIA expression and altered DNA-ploidy pattern in megakaryocytes of diabetic BB-rats. Eur J Clin Investig 22:591–598

    Article  Google Scholar 

  45. Winocour PD, Bryszewska M, Watala C et al (1990) Reduced membrane fluidity in platelets from diabetic patients. Diabetes 39:241–244

    Article  CAS  PubMed  Google Scholar 

  46. Iwase E, Tawata M, Aida K et al (1998) A cross-sectional evaluation of spontaneous platelet aggregation in relation to complications in patients with type II diabetes mellitus. Metabolism 47:699–705

    Article  CAS  PubMed  Google Scholar 

  47. Di Minno G, Silver MJ, Cerbone AM et al (1985) Increased binding of fibrinogen to platelets in diabetes: the role of prostaglandins and thromboxane. Blood 65:156–162

    Google Scholar 

  48. Di Minno MN, Pezzullo S, Palmieri V et al (2011) Genotype-independent in vivo oxidative stress following a methionine loading test: maximal platelet activation in subjects with early-onset thrombosis. Thromb Res 128:e43–e48

    Article  PubMed  Google Scholar 

  49. Steiner M, Reinhardt KM, Krammer B et al (1994) Increased levels of soluble adhesion molecules in type 2 (non-insulin dependent) diabetes mellitus are independent of glycaemic control. Thromb Haemost 72:979–984

    CAS  PubMed  Google Scholar 

  50. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Investig 87:432–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gerrard JM, Stuart MJ, Rao GH et al (1980) Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med 95:950–958

    CAS  PubMed  Google Scholar 

  52. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  53. La Selva M, Beltramo E, Passera P et al (1993) The role of endothelium in the pathogenesis of diabetic microangiopathy. Acta Diabetol 30:190–200

    Article  PubMed  Google Scholar 

  54. Piarulli F, Sartore G, Lapolla A (2013) Glyco-oxidation and cardiovascularcomplications in type 2 diabetes: a clinical update. Acta Diabetol 50:101–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Coppinger JA, Cagney G, Toomey S et al (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  CAS  PubMed  Google Scholar 

  56. Sauls DL, Banini AE, Boyd LC et al (2007) Elevated prothrombin level and shortened clotting times in subjects with type 2 diabetes. J Thromb Haemost 5:638–639

    Article  CAS  PubMed  Google Scholar 

  57. Boden G, Vaidyula VR, Homko C et al (2007) Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 92:4352–4358

    Article  CAS  PubMed  Google Scholar 

  58. Breitenstein A, Tanner FC, Luscher TF (2010) Tissue factor and cardiovascular disease: quo vadis? Circ J 74:3–12

    Article  CAS  PubMed  Google Scholar 

  59. Rao AK, Chouhan V, Chen X et al (1999) Activation of the tissue factor pathway of blood coagulation during prolonged hyperglycemia in young healthy men. Diabetes 48:1156–1161

    Article  CAS  PubMed  Google Scholar 

  60. Hirano T, Kashiwazaki K, Moritomo Y et al (1997) Albuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res Clin Pract 36:11–18

    Article  CAS  PubMed  Google Scholar 

  61. Daniele G, Guardado Mendoza R et al (2014) The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetol 51:123–131

    Article  CAS  PubMed  Google Scholar 

  62. Conlan MG, Folsom AR, Finch A et al (1993) Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) study. Thromb Haemost 70:380–385

    CAS  PubMed  Google Scholar 

  63. Undas A, Wiek I, Stepien E et al (2008) Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31:1590–1595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Myrup B, Rossing P, Jensen T et al (1995) Procoagulant activity and intimal dysfunction in IDDM. Diabetologia 38:73–78

    Article  CAS  PubMed  Google Scholar 

  65. Dunn EJ, Ariëns RA (2004) Fibrinogen and fibrin clot structure in diabetes. Herz 29:470–479

    Article  PubMed  Google Scholar 

  66. Eliasson M, Roder ME, Dinesen B et al (1997) Proinsulin, intact insulin, and fibrinolytic variables and fibrinogen in healthy subjects. Diabetes Care 20:1252–1255

    Article  CAS  PubMed  Google Scholar 

  67. Hernández-Espinosa D, Ordóñez A, Miñano A, Martínez-Martínez I, Vicente V, Corral J (2009) Hyperglycaemia impairs antithrombin secretion: possible contribution to the thrombotic risk of diabetes. Thromb Res 124:483–489

    Article  PubMed  Google Scholar 

  68. Ceriello A, Quatraro A, Dello Russo P et al (1990) Protein C deficiency in insulin-dependent diabetes: a hyperglycemia-related phenomenon. Thromb Haemost 64:104–107

    CAS  PubMed  Google Scholar 

  69. Lütjens A, teVelde AA, vdVeen EA et al (1985) Glycosylation of human fibrinogen in vivo. Diabetologia 28:87–89

    Article  PubMed  Google Scholar 

  70. Auwerx J, Bouillon R, Collen D et al (1988) Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8:68–72

    Article  CAS  PubMed  Google Scholar 

  71. Kishore P, Li W, Tonelli J et al (2010) Adipocyte-derived factors potentiate nutrient-induced production of plasminogen activator inhibitor-1 by macrophages. Sci Transl Med 2:20ra15

    Article  PubMed  Google Scholar 

  72. Devaraj S, Xu DY, Jialal I (2003) C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells. Implications for the metabolic syndrome and atherothrombosis. Circulation 107:398–404

    Article  CAS  PubMed  Google Scholar 

  73. Sakamoto T, Woodcock-Mitchell J, Marutsuka K et al (1999) TNF-alpha and insulin, alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes. Am J Physiol 276:C1391–C1397

    CAS  PubMed  Google Scholar 

  74. Nordt TK, Schneider DJ, Sobel BE (1994) Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation 89:321–330

    Article  CAS  PubMed  Google Scholar 

  75. Kendall DM, Sobel BE, Coulston AM et al (2003) The insulin resistance syndrome and coronary artery disease. Coron Artery Dis 14:335–348

    Article  PubMed  Google Scholar 

  76. Pandolfi A, Giaccari A, Cilli C et al (2001) Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol 38:71–76

    Article  CAS  PubMed  Google Scholar 

  77. Giltay EJ, Elbers JMH, Gooren LJG et al (1998) Visceral fat accumulation is an important determinant of PAI-1 levels in young, nonobese men and women. Modulation by cross-sex hormone administration. Arterioscler Thromb Vasc Biol 18:1716–1722

    Article  CAS  PubMed  Google Scholar 

  78. Meigs JB, Mittleman MA, Nathan DM et al (2000) Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham offspring study. J Am Med Assoc 283:221–228

    Article  CAS  Google Scholar 

  79. Di Minno MN, Palmieri V, Lombardi G et al (2009) Lack of change in insulin levels as a biological marker of PAI-1 lowering in GH-deficient adults on r-HGH replacement therapy. Thromb Res 124:711–713

    Article  PubMed  Google Scholar 

  80. Hess K, Alzahrani SH, Mathai M et al (2012) A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia 55:1103–1113

    Article  CAS  PubMed  Google Scholar 

  81. Hess K, Alzahrani SH, Price JF et al (2014) Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia 57:1737–1741

    Article  CAS  PubMed  Google Scholar 

  82. Carmeliet P, Moons L, Lijnen R et al (1997) Inhibitor role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 96:3180–3191

    Article  CAS  PubMed  Google Scholar 

  83. Squizzato A, Galli M, Romualdi E et al (2010) Statins, fibrates, and venous thromboembolism: a meta-analysis. Eur Heart J 31:1248–1256

    Article  CAS  PubMed  Google Scholar 

  84. Pulmonary Embolism Prevention (PEP) Trial Collaborative Group (2000) Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. Lancet 355:1295–1302

    Article  Google Scholar 

  85. Brighton TA, Eikelboom JW, Mann K et al (2012) Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med 367:1979–1987

    Article  CAS  PubMed  Google Scholar 

  86. Becattini C, Agnelli G, Schenone A et al (2012) Aspirin for preventing the recurrence of venous thromboembolism. N Engl J Med 366:1959–1967

    Article  CAS  PubMed  Google Scholar 

  87. Simes J, Becattini C, Agnelli G et al (2014) Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. Circulation 130:1062–1071

    Article  CAS  PubMed  Google Scholar 

  88. Konstantinides SV, Torbicki A, Agnelli G et al (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069

    Article  PubMed  Google Scholar 

  89. Kearon C1, Akl EA, Comerota AJ, Prandoni P et al (2012) Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e419S–e494S

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Ruff CT, Giugliano RP, Braunwald E et al (2014) Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 383:955–962

    Article  CAS  PubMed  Google Scholar 

  91. Shireman TI, Mahnken JD, Howard PA et al (2006) Development of a contemporary bleeding risk model for elderly warfarin recipients. Chest 130:1390–1396

    Article  PubMed  Google Scholar 

  92. Hylek EM, Held C, Alexander JH et al (2014) Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin: The ARISTOTLE Trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation): predictors, characteristics, and clinical outcomes. J Am Coll Cardiol 63:2141–2147

    Article  PubMed  Google Scholar 

  93. Chang SH, Wu LS, Chiou MJ et al (2014) Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol 13:123–131

    Article  PubMed Central  PubMed  Google Scholar 

  94. Liu B, Wang J, Wang G (2014) Beneficial effects of pioglitazone on retardation of persistent atrial fibrillation progression in diabetes mellitus patients. Int Heart J. 55:499–505

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animals rights disclosure

This article does not contain any study with human or animal subjects performed by any of the authors.

Informed consent

This study does not involve human or animal subjects. No informed consent needs to be obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Pomero.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomero, F., Di Minno, M.N.D., Fenoglio, L. et al. Is diabetes a hypercoagulable state? A critical appraisal. Acta Diabetol 52, 1007–1016 (2015). https://doi.org/10.1007/s00592-015-0746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0746-8

Keywords

Navigation