Skip to main content

Advertisement

Log in

Association between EPCs count and rate of coronary revascularization in asymptomatic type 2 diabetic patients

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Coronary arterial disease (CAD) is common in diabetic patients, and endothelial progenitor cells (EPCs) are considered a surrogate marker for CAD, but controversies regarding this issue still remain. We investigated the potential clinical role of EPCs during coronary screening in asymptomatic type 2 diabetic patients screened with cardiovascular magnetic resonance (CMR). A total of 100 asymptomatic type 2 diabetic subjects (51 men and 49 women) were enrolled. Clinical and laboratory parameters, including EPCs (CD34+/CD133+/VEGFR-2+) count, were evaluated and CMR was performed. A total of 51 patients [silent myocardial infarction (n = 3), inducible ischemia (n = 11), suspected CAD (n = 37)] had abnormal finding on CMR. Of the 20 patients who later underwent invasive coronary angiography, 8 were treated with revascularization. Fifty-one subjects with abnormal finding on CMR were divided into two groups [subjects with revascularization (group I, n = 8) vs. without revascularization (group II, n = 43)]. Group I had a significantly increased EPCs level than group II (833 vs. 415, P = 0.027). Multivariate logistic regression analysis revealed that an increased EPCs level (OR = 1.003, P = 0.024) and a high body-mass index (OR = 1.907, P = 0.028) were independently correlated with revascularization. In our study, increased EPCs count is associated with performing revascularization in asymptomatic type 2 diabetic patients, and that increased EPCs count can provide clinically important information while performing intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ertek S, Cicero AF, Cesur M, Akcil M, Altuner Kayhan T, Avcioglu U, Korkmaz ME (2011) The severity of coronary atherosclerosis in diabetic and non-diabetic metabolic syndrome patients diagnosed according to different criteria and undergoing elective angiography. Acta Diabetol 48(1):21–27

    Article  PubMed  CAS  Google Scholar 

  2. Guo L, Cheng Y, Wang X, Pan Q, Li H, Zhang L, Wang Y (2010) Association between microalbuminuria and cardiovascular disease in type 2 diabetes mellitus of the Beijing Han nationality. Acta Diabetol (Epub ahead of print, 01 July) PubMed PMID: 20593206. doi:10.1007/s00592-010-0205-5

  3. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF (2011) The diabetic cardiomyopathy. Acta Diabetol 48(3):173–181

    Article  PubMed  Google Scholar 

  4. Poanta L, Porojan M, Dumitrascu DL (2011) Heart rate variability and diastolic dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol 48(3):191–196

    Article  PubMed  Google Scholar 

  5. Alexander CM, Landsman PB, Teutsch SM (2000) Diabetes mellitus, impaired fasting glucose, atherosclerotic risk factors, and prevalence of coronary heart disease. Am J Cardiol 86(9):897–902

    Article  PubMed  CAS  Google Scholar 

  6. Stein B, Weintraub WS, Gebhart SP, Cohen-Bernstein CL, Grosswald R, Liberman HA, Douglas JS Jr, Morris DC, King SB 3rd (1995) Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation 91(4):979–989

    Article  PubMed  CAS  Google Scholar 

  7. Uchmanowicz I, Loboz-Grudzien K, Jankowska-Polanska B, Sokalski L (2011) Influence of diabetes on health-related quality of life results in patients with acute coronary syndrome treated with coronary angioplasty. Acta Diabetol (Epub ahead of print, 27 March) PubMed PMID: 21442428. doi:10.1007/s00592-011-0280-2

  8. Wit MA, de Mulder M, Jansen EK, Umans VA (2010) Diabetes mellitus and its impact on long-term outcomes after coronary artery bypass graft surgery. Acta Diabetol (Epub ahead of print, 21 Sept) PubMed PMID: 20857149. doi:10.1007/s00592-010-0223-3

  9. Jeong IK, King GL (2011) New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia. Diabetes Metab J 35(1):8–11

    Article  PubMed  Google Scholar 

  10. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  11. Fadini GP, Agostini C, Sartore S, Avogaro A (2007) Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis 194(1):46–54

    Article  PubMed  Google Scholar 

  12. Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655

    Article  PubMed  CAS  Google Scholar 

  13. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7

    Article  PubMed  CAS  Google Scholar 

  14. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  15. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH (2004) Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci (Lond) 107(3):273–280

    Article  CAS  Google Scholar 

  16. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103(23):2776–2779

    Article  PubMed  CAS  Google Scholar 

  17. George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G (2004) Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 25(12):1003–1008

    Article  PubMed  CAS  Google Scholar 

  18. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ (2007) Screening for coronary artery disease in patients with diabetes. Diabetes Care 30(10):2729–2736

    Article  PubMed  Google Scholar 

  19. Scognamiglio R, Negut C, Ramondo A, Tiengo A, Avogaro A (2006) Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. J Am Coll Cardiol 47(1):65–71

    Article  PubMed  Google Scholar 

  20. Duerinckx AJ, Urman MK (1994) Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 193(3):731–738

    PubMed  CAS  Google Scholar 

  21. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328(12):828–832

    Article  PubMed  CAS  Google Scholar 

  22. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    Google Scholar 

  23. Brunner S, Schernthaner GH, Satler M, Elhenicky M, Hoellerl F, Schmid-Kubista KE, Zeiler F, Binder S, Schernthaner G (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci 50(1):392–398

    Article  PubMed  Google Scholar 

  24. Choi EK, Chun EJ, Choi SI, Chang SA, Choi SH, Lim S, Rivera JJ, Nasir K, Blumenthal RS, Jang HC, Chang HJ (2009) Assessment of subclinical coronary atherosclerosis in asymptomatic patients with type 2 diabetes mellitus with single photon emission computed tomography and coronary computed tomography angiography. Am J Cardiol 104(7):890–896

    Article  PubMed  Google Scholar 

  25. Cury RC, Cattani CA, Gabure LA, Racy DJ, de Gois JM, Siebert U, Lima SS, Brady TJ (2006) Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 240(1):39–45

    Article  PubMed  Google Scholar 

  26. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45(9):1449–1457

    Article  PubMed  CAS  Google Scholar 

  27. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53(1):195–199

    Article  PubMed  CAS  Google Scholar 

  28. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  PubMed  Google Scholar 

  29. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105(1):199–206

    Article  PubMed  CAS  Google Scholar 

  30. Kim DJ (2011) The epidemiology of diabetes in Korea. Diabetes Metab J 35(4):303–308

    Article  PubMed  Google Scholar 

  31. Pearson JD (2010) Endothelial progenitor cells–an evolving story. Microvasc Res 79(3):162–168

    Article  PubMed  CAS  Google Scholar 

  32. Liew A, Barry F, O’Brien T (2006) Endothelial progenitor cells: diagnostic and therapeutic considerations. Bioessays 28(3):261–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2010-0003277 and NRF-2009-0064591).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Jin Kim or Byung-Wan Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

592_2011_360_MOESM1_ESM.jpg

Supplemental Figure 1. Comparison of EPCs count according to glycemic control, medication, or presence of smoking history. Once HbA1c was stratified into interquartile ranges, there was a trend of decrease in EPCs count in the high HbA1c group (A). There was a trend of increase in EPCs count in patients taking statin (B), or TZD (C). EPCs count increased in patients taking ARB/ACEi (D). EPCs count decreased in patients with smoking history (E). EPCs = endothelial progenitor cells; HbA1c = glycated hemoglobin; TZD = thiazolidinedione; ARB = Angiotensin II receptor blocker; ACEi = Angiotensin-1 conversion enzyme inhibitor. Supplementary material 1 (JPEG 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.M., Kim, K.J., Moon, J.H. et al. Association between EPCs count and rate of coronary revascularization in asymptomatic type 2 diabetic patients. Acta Diabetol 49, 413–420 (2012). https://doi.org/10.1007/s00592-011-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0360-3

Keywords

Navigation