Skip to main content

Advertisement

Log in

Encephalopathies: the emerging diabetic complications

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Diabetic encephalopathies are now accepted complications of diabetes. They appear to differ in type 1 and type 2 diabetes as to underlying mechanisms and the nature of resulting cognitive deficits. The increased incidence of Alzheimer’s disease in type 2 diabetes is associated with insulin resistance, hyperinsulinemia and hyperglycemia, and commonly accompanying attributes such as hypercholesterolemia, hypertension and obesity. The relevance of these disorders as to the emergence of dementia and Alzheimer’s disease is discussed based on epidemiological studies. The pathobiology of accumulation of β-amyloid and tau the hallmarks of Alzheimer’s disease are discussed based on experimental data. Type 1 diabetic encephalopathy is likely to increase as a result of the global increase in the incidence of type 1 diabetes and its occurrence in increasingly younger patients. Alzheimer-like changes and dementia are not prominently increased in type 1 diabetes. Instead, the type 1 diabetic encephalopathy involves learning abilities, intelligence development and memory retrieval resulting in impaired school and professional performances. The major underlying component here appears to be insulin deficiency with downstream effects on the expression of neurotrophic factors, neurotransmitters, oxidative and apoptotic stressors resulting in defects in neuronal integrity, connectivity and loss commonly occurring in the still developing brain. Recent experimental data emphasize the role of impaired central insulin action and provide information as to potential therapies. Therefore, the underlying mechanisms resulting in diabetic encephalopathies are complex and appear to differ between the two types of diabetes. Major headway has been made in our understanding of their pathobiology; however, many questions remain to be clarified. In view of the increasing incidence of both type 1 and type 2 diabetes, intensified investigations are called for to expand our understanding of these complications and to find therapeutic means by which these disastrous consequences can be prevented and modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biessels GJ, Luchsinger JA (eds) (2009) Diabetes and the brain. Humana Press, New York

    Google Scholar 

  2. Miles WR, Root HF (1922) Psychologic tests applied in diabetic patients. Arch Intern Med 30:767–777

    Google Scholar 

  3. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 58:1937–1941

    Google Scholar 

  4. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 61:661–666

    Article  PubMed  Google Scholar 

  5. Xu WL, Qui CX, Wahlin A, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungshohman project: a 6 year follow-up. Neurology 63:1181–1186

    CAS  PubMed  Google Scholar 

  6. Kumari M, Marmot M (2005) Diabetes and cognitive function in a middle-aged cohort: findings from the Whitehall II study. Neurology 65:1597–1603

    Article  PubMed  Google Scholar 

  7. Worrall G, Moulton E, Briffett E (1993) Effect of type II diabetes mellitus on cognitive function. J Fam Pract 36:639–643

    CAS  PubMed  Google Scholar 

  8. Fontbonne A, Berr C, Ducimetière P, Alpérovitch A (2001) Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care 24:366–370

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen HT, Black SA, Roy LA, Espino DV, Markides KS (2002) Predictors of decline in MMSE scores among older Mexican Americans. J Gerontol A Biol Sci Med Sci 57:M181–M185

    PubMed  Google Scholar 

  10. van Harten B, Oosterman J, Muslimovic D, van Loon BJ, Scheltens P, Weinstein HC (2007) Cognitive impairment of MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing 36:164–170

    Article  PubMed  Google Scholar 

  11. Hiltunen LA, Keinänen-Kiukaanniemi SM, Läärä EM (2001) Glucose tolerance and cognitive impairment in an elderly population. Public Health 115:197–200

    Article  CAS  PubMed  Google Scholar 

  12. Wu JH, Haan MN, Liang J, Ghosh D, Gonzalez HM, Herman WH (2003) Impact of diabetes on cognitive function among older Latinos: a population-based cohort study. J Clin Epidemiol 56:686–693

    Article  PubMed  Google Scholar 

  13. Hassing LB, Grant MD, Hofer SM, Pedersen NL, Nilsson SE, Berg S, McClearn G, Johansson B (2004) Type 2 diabetes mellitus contributes to cognitive decline in old age: a longitudinal population-based study. J Int Neuropsychol Soc 10:599–607

    Article  PubMed  Google Scholar 

  14. Ryan CM, Geckle MO (2000) Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 23:1486–1493

    Article  CAS  PubMed  Google Scholar 

  15. Abbatecola AM, Paolisso G, Lamponi M, Bandinelli S, Lauretani F, Launer L, Ferrucci L (2004) Insulin resistance and executive dysfunction in older persons. J Am Geriatr Soc 52:1713–1718

    Article  PubMed  Google Scholar 

  16. Dik MG, Jonker C, Comijs HC, Deeg DJ, Kok A, Yaffe K, Penninx BW (2007) Contributions of metabolic syndrome components to cognition in older individuals. Diabetes Care 30:2655–2660

    Article  PubMed  Google Scholar 

  17. Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Helkala EL, Haapala I, Nissinen A, Rauramaa R (2007) Metabolic syndrome and cognitive function: a population-based follow-up study in elderly women. Dement Geriatr Cogn Disord 23:29–34

    Article  PubMed  Google Scholar 

  18. Convit A, Wolf OT, Tarshish C, de Leon MJ (2003) Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 100:2019–2022

    Article  CAS  PubMed  Google Scholar 

  19. Pinkston JB, Alekseeva N, González Toledo E (2009) Stroke and dementia. Neurol Res 31:824–831

    Article  PubMed  Google Scholar 

  20. Schoenle EJ, Schoenle D, Molinari L, Largo RH (2002) Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia 45:108–114

    Article  CAS  PubMed  Google Scholar 

  21. Dobbing J, Sands J (1971) Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of the brain growth-spurt. Biol Neonate 19:363–378

    Article  CAS  PubMed  Google Scholar 

  22. Kramer L, Fasching P, Madl C, Schneider B, Damjancic P, Waldhäusl W, Irsigler K, Grimm G (1998) Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes 47:1909–1914

    Article  CAS  PubMed  Google Scholar 

  23. The Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions, Complications (DCCT/EDIC) Study Research Group (2007) Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med 356:1842–1852

    Article  Google Scholar 

  24. Sima AAF, Zhang W, Muzik O, Kreipke CW, Rafols JA, Hoffman WH (2009) Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-peptide. Rev Diabet Stud 6:211–222

    Article  PubMed  Google Scholar 

  25. Brismar T, Hyllienmark L, Ekberg K, Johansson BL (2002) Loss of temporal lobe beta power in young adults with type 1 diabetes mellitus. Neuroreport 13:2469–2473

    Article  PubMed  Google Scholar 

  26. Erkinjuntti T, Ganthier S (2009) The concept of vascular cognitive impairment. Front Neurol Neurosci 24:79–85

    Article  PubMed  Google Scholar 

  27. Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R (2001) Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 154:635–641

    Article  CAS  PubMed  Google Scholar 

  28. Peila R, Rodriguez BL, Launer LJ, Honolulu-Asia Aging Study (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies. Diabetes 51:1256–1262

    Article  CAS  PubMed  Google Scholar 

  29. Peila R, Rodriguez BL, White LR, Launer LJ (2004) Fasting insulin and incident dementia in an elderly population of Japanese-American men. Neurology 63:228–233

    CAS  PubMed  Google Scholar 

  30. Akomolafe A, Beiser A, Meigs JB, Au R, Green RC, Farrer LA, Wolf PA, Seshadri S (2006) Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol 63:1551–1555

    Article  PubMed  Google Scholar 

  31. Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039

    Article  CAS  PubMed  Google Scholar 

  32. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62:1556–1560

    Article  PubMed  Google Scholar 

  33. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than 3 decades later. Neurology 71(14):1057–1064

    Article  CAS  PubMed  Google Scholar 

  34. Spence JD (1996) Cerebral consequences of hypertension: where do they lead? J Hypertens Suppl 14:S139–S145

    CAS  PubMed  Google Scholar 

  35. Etgen T, Sauder D, Bichel H, Sauder K, Förstl H (2010) Cognitive decline: the relevance of diabetes, hyperlipidaemia and hypertension. Br J Diab Vasc Dis 10:115. doi:10.1177/1474651410368408

    Article  Google Scholar 

  36. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T, Kobalava Z, Sarti C, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Birkenhager WH, Systolic Hypertension in Europe Investigators (2002) The prevention of dementia with anti-hypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) Study. Arch Int Med 162:2046–2052

    Article  Google Scholar 

  37. Li N-C, Lee A, Whitmer RA, Kivipelto M, Lowler E, Kazis LE, Wolozin B (2010) Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: a prospective cohort analysis. BMJ 340:b5465. doi:10:1136/baijb5465

    Article  PubMed  Google Scholar 

  38. Tezapsidis N, Johnston JM, Smith MA, Ashford JW, Casadesus G, Robakis NK, Wolozin B, Perry G, Zu X, Greco SJ, Sarkar S (2009) Leptin: a novel therapeutic strategy for Alzheimer’s disease. J Alzheimer Dis 16:731–740

    Google Scholar 

  39. Nourhashémi F, Deschamps V, Larrieu S, Letenneur L, Dartigues JF, Barberger-Gateau P, PAQU ID Study. Personnes Agées Quid (2003) Body mass index and incidence of dementia: the PAQUID study. Neurology 60:117–119

    Article  PubMed  Google Scholar 

  40. Henderson VW, Guthrie JR, Dennerstein L (2003) Serum lipids and memory in a population based cohort of middle age women. J Neurol Neurosurg Psychiatry 74:1530–1535

    Article  CAS  PubMed  Google Scholar 

  41. Vermeer SE, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MM (2002) Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33:21–25

    Article  PubMed  Google Scholar 

  42. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14

    Article  PubMed  Google Scholar 

  43. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60:989–994

    Article  PubMed  Google Scholar 

  44. Gouw AA, van der Flier WM, Fazekas F, van Straaten EC, Pantoni L, Poggesi A, Inzitari D, Erkinjuntti T, Wahlund LO, Waldemar G, Schmidt R, Scheltens P, Barkhof F, LADIS Study Group (2008) Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the Leukoaraiosis and Disability study. Stroke 39:1414–1420

    Article  PubMed  Google Scholar 

  45. Jongen C, van der Grond J, Kappelle LJ, Biessels GJ, Viergever MA, Pluim JP, Utrecht Diabetic Encephalopathy Study Group (2007) Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabet Med 24:166–171

    Article  Google Scholar 

  46. van Harten B, Oosterman JM, Potter van Loon BJ, Scheltens P, Weinstein HC (2007) Brain lesions on MRI in elderly patients with type 2 diabetes mellitus. Eur Neurol 57:70–74

    Article  PubMed  Google Scholar 

  47. den Heijer T, Vermeer SE, van Dijk EJ, Prins ND, Koudstaal PJ, Hofman A, Breteler MM (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610

    Article  Google Scholar 

  48. Korf ES, White LR, Scheltens P, Launer LJ (2006) Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29:2268–2274

    Article  PubMed  Google Scholar 

  49. Korf ES, van Straaten EC, de Leeuw FE, van der Flier WM, Barkhof F, Pantoni L, Basile AM, Inzitari D, Erkinjuntti T, Wahlund LO, Rostrup E, Schmidt R, Fazekas F, Scheltens P, LADIS Study Group (2007) Diabetes mellitus, hypertension and medial temporal lobe atrophy: the LADIS study. Diabet Med 24:166–171

    Article  CAS  PubMed  Google Scholar 

  50. Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, Biessels GJ, Utrecht Diabetic Encephalopathy Study Group (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    Article  CAS  PubMed  Google Scholar 

  51. Akisaki T, Sakurai T, Takata T, Umegaki H, Araki A, Mizuno S, Tanaka S, Ohashi Y, Iguchi A, Yokono K, Ito H (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22:376–384

    Article  PubMed  Google Scholar 

  52. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, Breteler MM (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    Article  PubMed  Google Scholar 

  53. Knopman DS, Mosley TH, Catellier DJ, Sharrett AR, Atherosclerosis Risk in Communities (ARIC) Study (2005) Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology 65:876–881

    Article  PubMed  Google Scholar 

  54. Li Z-G, Zhang W, Sima AAF (2005) The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 1037:12–24

    Article  CAS  PubMed  Google Scholar 

  55. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabet Sci Tech 2:1101–1113

    Google Scholar 

  56. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

  57. Tesfomariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87:1643–1648

    Article  Google Scholar 

  58. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein-kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  59. Hoyer S (2004) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–152

    CAS  PubMed  Google Scholar 

  60. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    Article  CAS  PubMed  Google Scholar 

  61. Li Z-G, Zhang W, Sima AAF (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56:1817–1824

    Article  CAS  PubMed  Google Scholar 

  62. Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152

    Article  CAS  PubMed  Google Scholar 

  63. Li Z-G, Qiang X, Sima AAF (2001) Grunberger G: C-peptide attenuates protein tyrosine phosphatase activity and enhances glycogen synthesis in L6 myoblasts. Biochem Biophys Res Com 26:615–619

    Article  CAS  Google Scholar 

  64. Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131:3311–3334

    Article  PubMed  Google Scholar 

  65. Sima AAF, Kamiya H, Li Z-G (2004) Insulin, C-peptide hyperglycemia and central nervous system complications in diabetes. Eur J Pharmacol 490:187–197

    Article  CAS  PubMed  Google Scholar 

  66. Pierson CR, Zhang W, Murakawa Y, Sima AAF (2002) Early gene responses of trophic factors differ in nerve regeneration in type 1 and type 2 diabetic neuropathy. J Neuropathol Exp Neurol 61:857–871

    CAS  PubMed  Google Scholar 

  67. Xu G, Sima AAF (2001) Altered immediate early gene expression is impaired in diabetic nerve: implications in regeneration. J Neuropathol Exp Neurol 60(10):972–983

    CAS  PubMed  Google Scholar 

  68. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    Article  CAS  PubMed  Google Scholar 

  69. Luppi P, Cifarelli V, Tse H, Piganelli J, Trucco M (2008) Human C-peptide antagonises high glucose-induced endothelial dysfunction through the nuclear factor-kappaB pathway. Diabetologia 51:1534–1543

    Article  CAS  PubMed  Google Scholar 

  70. Sima AAF, Zhang W, Kreipke CW, Rafols JA, Hoffman WH (2009) Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud 6:37–42

    Article  PubMed  Google Scholar 

  71. Li Z-G, Zhang W, Sima AAF (2003) C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 19:375–385

    Article  PubMed  CAS  Google Scholar 

  72. Hayden MS, Shosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  73. Balakrishnan S, Mathew J, Paulose CS (2010) Cholinergic and glutamergic receptor functional regulation in long-term, low dose somatotropin and insulin treatment to ageing rats: rejuvenation of brain function. Mol Cell Endocrinol 314:23–30

    Article  CAS  PubMed  Google Scholar 

  74. Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Sejnowski TJ, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 35:10883–10889

    Article  CAS  Google Scholar 

  75. Brunton S (2009) Beyond glycemic control: treating the entire type 2 diabetes disorder. Postgrad Med. doi:10.3810/pgm.2009.09.2054

  76. Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, Tweedie D, Perry T, Mattson MP, Kapogiannis D, Sambamurti K, Lahiri DK, Greig NH (2010) GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219

    CAS  PubMed  Google Scholar 

  77. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    Article  CAS  PubMed  Google Scholar 

  78. Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM (2003) Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis 5:209–228

    PubMed  Google Scholar 

  79. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167

    Article  CAS  PubMed  Google Scholar 

  80. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  81. Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    Article  CAS  PubMed  Google Scholar 

  82. Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122

    Article  CAS  PubMed  Google Scholar 

  83. Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE (2002) Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9:11–23

    Article  CAS  PubMed  Google Scholar 

  84. Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–11740

    Article  CAS  PubMed  Google Scholar 

  85. Sima AAF, Zhang W (2010) Caveolin 1 plays a central role in amyloidogenesis in type 2 diabetes (abstract). XXth Neurodiab, EASD Stockholm

  86. Selkoe DJ (2001) Alzheimer’s disease genes, proteins and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  87. Papassotiropoulos A, Wollmer MA, Tsolaki M, Brunner F, Molyva D, Lütjohann D, Nitsch RM, Hock C (2005) A cluster of cholesterol-related genes confers susceptibility for Alzheimer’s disease. J Clin Psychiatry 66:940–947

    Article  CAS  PubMed  Google Scholar 

  88. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2002) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 97:2892–2897

    Article  Google Scholar 

  89. Petanceska SS, Gandy S (1999) The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer’s amyloid precursor protein. J Neurochem 73:2316–2320

    Article  CAS  PubMed  Google Scholar 

  90. Refolo LM, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K, Pappolla MA (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331

    Article  CAS  PubMed  Google Scholar 

  91. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    Article  CAS  PubMed  Google Scholar 

  92. Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901

    Article  CAS  PubMed  Google Scholar 

  93. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18:143–150

    Article  PubMed  Google Scholar 

  94. Sima AAF, Kamiya H (2008) Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr Drug Targets 9:37–46

    Article  CAS  PubMed  Google Scholar 

  95. Sima AAF, Li Z-G (2005) The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetes. Diabetes 54:1497–1505

    Article  CAS  PubMed  Google Scholar 

  96. Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, Miura M, Yoshikawa K (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 19:6955–6964

    CAS  PubMed  Google Scholar 

  97. Matsui T, Ramasamy K, Ingelsson M, Fukumoto H, Conrad C, Frosch MP, Irizarry MC, Yuan J, Hyman BT (2006) Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable abeta42 levels. J Neuropathol Exp Neurol 65:508–516

    Article  CAS  PubMed  Google Scholar 

  98. Anonymous Author (2010) Acetyl-l-carnitine monograph. Altern Med Rev 15:76–83

    Google Scholar 

  99. Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G (2005) Mechanisms of ischemic neuroprotection by acetyl-l-carnitine. Ann NY Acad Sci 1053:153–161

    Article  CAS  PubMed  Google Scholar 

  100. Sima AAF (2009) Pathobiology of diabetic encephalopathy in animal models. In: Biessels GJ, Luchsinger JA (eds) Diabetes and the brain. Humana Press, Clifton, pp 409–431

    Chapter  Google Scholar 

  101. Kim B, Backus C, Oh SS, Hayes JM, Feldman EL (2009) Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150:5294–5301

    Article  CAS  PubMed  Google Scholar 

  102. Ryan C, Vega A, Drash A (1985) Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 75:921–927

    CAS  PubMed  Google Scholar 

  103. Northam EA, Anderson PJ, Jacobs R, Hughes M, Warne GL, Werther GA (2001) Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 24:1541–1546

    Article  CAS  PubMed  Google Scholar 

  104. Northam EA, Rankins D, Lin A, Wellard RM, Pell GS, Finch SJ, Werther GA, Cameron FJ (2009) Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care 32:445–450

    Article  PubMed  Google Scholar 

  105. Ryan CM (2006) Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diabetes 7:289–297

    Article  PubMed  Google Scholar 

  106. Fox MA, Chen RS, Holmes CS (2003) Gender differences in memory and learning in children with insulin-dependent diabetes mellitus (IDDM) over a 4-year follow-up interval. J Pediatr Psychol 28:569–578

    Article  PubMed  Google Scholar 

  107. Austin EJ, Deary IJ (1999) Effects of repeated hypoglycemia on cognitive function: a psychometrically validated reanalysis of the diabetes control and complications trial data. Diabetes Care 22:1273–1277

    Article  CAS  PubMed  Google Scholar 

  108. Ehehalt S, Blumenstock G, Willasch AM, Hub R, Ranke MB, Neu A, DIARY-Study Group Baden-Württemberg (2008) Continuous rise in incidence of childhood type 1 diabetes in Germany. Diabet Med 25:755–757

    Article  CAS  PubMed  Google Scholar 

  109. Harjutsalo V, Sjöberg L, Tuomilehto J (2008) Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371:1777–1782

    Article  PubMed  Google Scholar 

  110. Kumar P, Krishna P, Reddy SC, Gurappa M, Aravind SR, Munichoodappa C (2008) Incidence of type 1 diabetes mellitus and associated complications among children and young adults: results from Karnataka Diabetes Registry 1995–2008. J Ind Med Assoc 106:708–711

    Google Scholar 

  111. EURODIAB ACE Study Group (2000) Variation and trends in incidence of childhood diabetes in Europe. Lancet 355:873–876

    Article  Google Scholar 

  112. Ho MS, Weller NJ, Ives FJ, Carne CL, Murray K, Vanden Driesen RI, Nguyen TP, Robins PD, Bulsara M, Davis EA, Jones TW (2008) Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J Pediatr 153:385–390

    Article  PubMed  Google Scholar 

  113. Musen G, Lyoo IK, Sparks CR, Weinger K, Hwang J, Ryan CM, Jimerson DC, Hennen J, Renshaw PF, Jacobson AM (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326–333

    Article  CAS  PubMed  Google Scholar 

  114. Hoffman WH, Artlett CM, Zhang W, Kreipke CW, Passmore GG, Rafols JA, Sima AAF (2008) Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Res 1238:154–162

    Article  CAS  PubMed  Google Scholar 

  115. van Duinkerken E, Klein M, Schoonenboom NS, Hoogma RP, Moll AC, Snoek FJ, Stam CJ, Diamant M (2009) Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes 58:2335–2343

    Article  PubMed  CAS  Google Scholar 

  116. Wilkins TJ (2001) The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 44:914–922

    Article  Google Scholar 

  117. Dabelea D (2009) The accelerating epidemic of childhood diabetes. Lancet 372:1999–2000

    Article  Google Scholar 

  118. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301:2129–2140

    Article  CAS  PubMed  Google Scholar 

  119. Salem MA, Matta LF, Tantawy AA, Hussein M, Gad GI (2002) Single photon emission tomography (SPECT) study of regional cerebral blood flow in normoalbuminuric children and adolescents with type 1 diabetes. 3:155–162

  120. Perantie DC, Wu J, Koller JM, Lim A, Warren SL, Black KJ, Sadler M, White NH, Hershey T (2007) Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care 30:2331–2337

    Article  PubMed  Google Scholar 

  121. Malone JI, Hanna S, Saporta S, Mervis RF, Park CR, Chong L, Diamond DM (2008) Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatr Diab 9:531–539

    Article  Google Scholar 

  122. Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266

    Article  CAS  PubMed  Google Scholar 

  123. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1998) Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 800:125–135

    Article  CAS  PubMed  Google Scholar 

  124. Sima AAF, Yagihashi S (1986) Central-peripheral distal axonopathy in the spontaneously diabetic BB- rat: Ultrastructural and morphometric findings. Diab Res Clin Pract 1:289–298

    Article  CAS  Google Scholar 

  125. Kamijo M, Cherian PV, Sima AAF (1993) The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W-rat. Diabetologia 36:893–898

    Article  CAS  PubMed  Google Scholar 

  126. Biessels GJ (2007) Diabetic encephalopathy. In: Veves A, Malik RA (eds) Diabetic neuropathy—clinical management. Humana Press, Totowa, p 18

    Google Scholar 

  127. Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:1–3

    Article  Google Scholar 

  128. Wiener SI, Paul CA, Eichenbaum H (1989) Spatial and behavioral correlates to hippocampal neuronal activity. J Neurosci 9:2737–2763

    CAS  PubMed  Google Scholar 

  129. Blanchard JG, Duncan PM (1997) Effect of the combination of insulin, glucose and scopolamine on radial arm maze performance. Pharmacol Biochem Behav 58:209–214

    Article  CAS  PubMed  Google Scholar 

  130. Grunberger G, Qiang X, Li Z-G, Mathews ST, Sbriessa D, Shisheva A, Sima AAF (2001) Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44:1247–1257

    Article  CAS  PubMed  Google Scholar 

  131. Sima AAF, Wahren J (eds) (2009) The relevance of C-peptide in diabetes and its complications. Rev Diab Stud Special Issue 6:131–224

    Google Scholar 

  132. Toth C, Schmidt AM, Tuor UI, Francis G, Foniok T, Brussee V, Kaur J, Yan SF, Martinez JA, Barber PA, Buchan A, Zochodne DW (2006) Diabetes, leukoencephalopathy and RAGE. Neurobiol Dis 23:445–461

    Article  CAS  PubMed  Google Scholar 

  133. Winick M, Noble A (1965) Quantitative changes in DNA, RNA and protein during prenatal and postnatal growth in the rat. Dev Biol 12:451–466

    Article  CAS  PubMed  Google Scholar 

  134. Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes 56:211–216

    Article  CAS  PubMed  Google Scholar 

  135. Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PL, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145:301–308

    CAS  PubMed  Google Scholar 

  136. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  137. International Diabetes Federation (2000) Diabetes Atlas 2000. International Diabetes Federation, Brussels

  138. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M, Alzheimer’s Disease International (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders A. F. Sima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sima, A.A.F. Encephalopathies: the emerging diabetic complications. Acta Diabetol 47, 279–293 (2010). https://doi.org/10.1007/s00592-010-0218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-010-0218-0

Keywords

Navigation