Skip to main content

Advertisement

Log in

Short isthmic versus long trans-isthmic C2 screw: anatomical and biomechanical evaluation

  • Original Article • SPINE - CERVICAL
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Introduction

The Harms technique is now considered as the gold standard to stabilize C1–C2 cervical spine. It has been reported to decrease the risk of vertebral artery injury. However, the risk of vascular injury does not totally disappear, particularly due to the proximity of the trans-isthmic C2 screw with the foramen transversarium of C2. In order to decrease this risk of vertebral artery injury, it has been proposed to use a shorter screw which stops before the foramen transversarium.

Object

The main objective was to compare the pull-out strength of long trans-isthmic screw (LS) versus short isthmic screw (SS) C2 screw. An additional morphological study was also performed.

Method

Thirteen fresh-frozen human cadaveric cervical spines were included in the study. Orientation, width and height of the isthmus of C2 were measured on CT scan. Then, 3.5-mm titanium screws were inserted in C2 isthmus according to the Harms technique. Each specimen received a LS and a SS. The side and the order of placement were determined with a randomization table. Pull-out strengths and stiffness were evaluated with a testing machine, and paired samples were compared using Wilcoxon signed-rank test and also the Kaplan–Meier method.

Results

The mean isthmus transversal orientation was 20° ± 6°. The mean width of C2 isthmus was less than 3.5 mm in 35 % of the cases. The mean pull-out strength for LS was 340 ± 85 versus 213 ± 104 N for SS (p = 0.004). The mean stiffness for the LS was 144 ± 40 and 97 ± 54 N/mm for the SS (p = 0.02).

Discussion

The pull-out strength of trans-isthmic C2 screws was significantly higher (60 % additional pull-out resistance) than SSs. Although associated with an inferior resistance, SSs may be used in case of narrow isthmus which contraindicates 3.5-mm screw insertion but does not represent the first option for C2 instrumentation.

Level of evidence

Level V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1989) Volvo award in basic science. Device-related osteoporosis with spinal instrumentation. Spine 14:919–926 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  2. Yanni DS, Perin NI (2010) Fixation of the axis. Neurosurgery 66:147–152

    Article  PubMed  Google Scholar 

  3. Grob D, Magerl F (1987) Surgical stabilization of C1 and C2 fractures. Orthopade 16:46–54

    CAS  PubMed  Google Scholar 

  4. Grob D, Jeanneret B, Aebi M, Markwalder TM (1991) Atlanto-axial fusion with transarticular screw fixation. J Bone Joint Surg Br 73:972–976

    CAS  PubMed  Google Scholar 

  5. Harms J, Melcher RP (2001) Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine 26:2467–2471 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  6. Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K et al (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine 26:2692–2700 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  7. Naderi S, Crawford NR, Song GS, Sonntag VK, Dickman CA (1998) Biomechanical comparison of C1–C2 posterior fixations. Cable, graft, and screw combinations. Spine 23:1946 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  8. Melcher RP, Puttlitz CM, Kleinstueck FS, Lotz JC, Harms J, Bradford DS (2002) Biomechanical testing of posterior atlantoaxial fixation techniques. Spine 27:2435–2440. doi:10.1097/01.BRS.0000031262.05676.E0

    Article  PubMed  Google Scholar 

  9. Wright NM (2004) Posterior C2 fixation using bilateral, crossing C2 laminar screws: case series and technical note. J Spinal Disord Tech 17:158–162

    Article  PubMed  Google Scholar 

  10. Goel A, Laheri V (1994) Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien) 129:47–53

    Article  CAS  Google Scholar 

  11. Yoshida M, Neo M, Fujibayashi S, Nakamura T (2006) Comparison of the anatomical risk for vertebral artery injury associated with the C2-pedicle screw and atlantoaxial transarticular screw. Spine 31:E513–E517. doi:10.1097/01.brs.0000224516.29747.52 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  12. Elliott RE, Tanweer O, Boah A, Morsi A, Ma T, Smith ML et al (2012) Atlantoaxial fusion with screw–rod constructs: meta-analysis and review of literature. World Neurosurg. doi:10.1016/j.wneu.2012.03.013

    Google Scholar 

  13. Sim HB, Lee JW, Park JT, Mindea SA, Lim J, Park J (2011) Biomechanical evaluations of various c1–c2 posterior fixation techniques. Spine 36:E401–E407 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  14. Lill CA, Schneider E, Goldhahn J, Haslemann A, Zeifang F (2006) Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Arch Orthop Trauma Surg 126:686–694. doi:10.1007/s00402-006-0186-6

    Article  CAS  PubMed  Google Scholar 

  15. Cacciola F, Phalke U, Goel A (2004) Vertebral artery in relationship to C1–C2 vertebrae: an anatomical study. Neurol India 52:178–184

    PubMed  Google Scholar 

  16. Paramore CG, Dickman CA, Sonntag VK (1996) The anatomical suitability of the C1–2 complex for transarticular screw fixation. J Neurosurg 85:221–224. doi:10.3171/jns.1996.85.2.0221

    Article  CAS  PubMed  Google Scholar 

  17. Bhatnagar R, Yu WD, Bergin PF, Matteini LE, O’Brien JR (2010) The anatomic suitability of the C2 vertebra for intralaminar and pedicular fixation: a computed tomography study. Spine J 10:896–899. doi:10.1016/j.spinee.2010.06.010

    Article  PubMed  Google Scholar 

  18. Kazan S, Yildirim F, Sindel M, Tuncer R (2000) Anatomical evaluation of the groove for the vertebral artery in the axis vertebrae for atlanto-axial transarticular screw fixation technique. Clin Anat 13:237–243. doi:10.1002/1098-235313:4<237::AID-CA2>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  19. Smith ZA, Bistazzoni S, Onibokun A, Chen N-F, Sassi M, Khoo LT (2010) Anatomical considerations for subaxial (C2) pedicle screw placement: a radiographic study with computed tomography in 93 patients. J Spinal Disord Tech 23:176–179. doi:10.1097/BSD.0b013e3181b40234

    Article  PubMed  Google Scholar 

  20. Pfeiffer M, Gilbertson LG, Goel VK, Griss P, Keller JC, Ryken TC et al (1996) Effect of specimen fixation method on pullout tests of pedicle screws. Spine 21:1037–1044 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  21. Dmitriev AE, Lehman RAJ, Helgeson MD, Sasso RC, Kuhns C, Riew DK (2009) Acute and long-term stability of atlantoaxial fixation methods: a biomechanical comparison of pars, pedicle, and intralaminar fixation in an intact and odontoid fracture model. Spine 34:365–370 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  22. Lehman RA, Dmitriev AE, Helgeson MD, Sasso RC, Kuklo TR, Riew KD (2008) Salvage of C2 pedicle and pars screws using the intralaminar technique: a biomechanical analysis. Spine 33:960–965. doi:10.1097/BRS.0b013e31816c915b (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  23. Benzel EC (1996) Anatomic consideration of C2 pedicle screw placement. Spine 21:2301–2302 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  24. Astm (2007) F543 standard specification and test methods for metallic medical bone screws. http://www.astm.org/Standards/F543.htm. Accessed 11 May 2016

  25. Roy-Camille R, Garcon P, Begue T, Lavaste F (1991) Etude biomécanique de l’ancrage des vis pédiculaires dorsales et lombaires. Le Rachis 3:109–114

    Google Scholar 

  26. Abshire BB, McLain RF, Valdevit A, Kambic HE (2001) Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out. Spine J 1:408–414. doi:10.1016/S1529-9430(01)00119-X

    Article  CAS  PubMed  Google Scholar 

  27. Defino HLA, Rosa RC, Silva P, Shimano AC, Volpon JB, de Paula FJA et al (2009) The effect of repetitive pilot-hole use on the insertion torque and pullout strength of vertebral system screws. Spine 34:871–876. doi:10.1097/BRS.0b013e31819e3556 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  28. Chatzistergos PE, Sapkas G, Kourkoulis SK (2010) The influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Spine 35:E332–E337. doi:10.1097/BRS.0b013e3181ba0b0c (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  29. Barrey C, Mertens P, Rumelhart C, Cotton F, Jund J, Perrin G (2004) Biomechanical evaluation of cervical lateral mass fixation: a comparison of the Roy-Camille and Magerl screw techniques. J Neurosurg 100:268–276

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lucas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, F., Mitton, D., Frechede, B. et al. Short isthmic versus long trans-isthmic C2 screw: anatomical and biomechanical evaluation. Eur J Orthop Surg Traumatol 26, 785–791 (2016). https://doi.org/10.1007/s00590-016-1770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-016-1770-2

Keywords

Navigation