Skip to main content
Log in

The distinct prediction standards for radiological assessments associated with soft tissue injuries in the acute tibial plateau fracture

  • Original Article • KNEE - ARTHROPLASTY
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

The goal of this study was to assess the incidence of soft tissue injury in the tibial plateau fracture by magnetic resonance image (MRI) and reveal the relationship between the articular widening/depression and the risk of meniscus and ligament disorder. A total of 54 patients with tibial plateau fracture were indicated for operative intervention. Soft tissue injuries were assessed by MRI. Meniscus, anterior/posterior cruciate ligaments and medial/lateral collateral ligaments injuries on MRI were evaluated. The articular widening/depression was measured in picture archiving and communication systems. Schatzker classification of fracture types was not significantly associated with soft tissue injuries. The rates of soft tissue injury in types IV and II (respectively, 85.7 and 74.1 %) were higher than those in other types. The meniscus injury was the most common soft tissue damage, and the incidence of meniscus injury was 55.6 %. When LPDCT and LPWCT were, respectively, about 7.6 mm and 10.1 mm and LPDX-ray and LPWX-ray, respectively, 5.6 and 7.4 mm, more attention should be paid on the collateral and cruciate ligament injuries in types I, II and III. Furthermore, when LPWCT and LPWX-ray were, respectively, about 10.3 and 8.6 mm, the collateral and cruciate ligaments were susceptible to injury in types IV and V. In conclusion, tibial plateau fracture can occur high morbidity of soft tissue injury, including meniscus and ligament disorder. X-ray and CT scan had different predicting standards for soft tissue injury, and the articular widening/depression in the tibial plateau was associated with meniscus and ligament injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MDCT:

Multidetector computed tomography

LPW:

Lateral plateau widening

LPD:

Lateral plateau depression

MRI:

Magnetic resonance imaging

ACL/PCL:

Anterior/posterior cruciate ligament

MCL/LCL:

Medial/lateral collateral ligament

References

  1. Delamarter RB, Hohl M, Hopp EJ (1990) Ligament injuries associated with tibial plateau fractures. Clin Orthop Relat Res 250:226–233

    PubMed  Google Scholar 

  2. Schatzker J, McBroom R, Bruce D (1979) The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res 138:94–104

    PubMed  Google Scholar 

  3. Shepherd L, Abdollahi K, Lee JC, Vangsness CT (2002) The prevalence of soft tissue injuries in nonoperative tibial plateau fractures as determined by magnetic resonance imaging. J Orthop Trauma 16:628–631

    Article  PubMed  Google Scholar 

  4. Chiba T, Sugita T, Onuma M, Kawamata T, Umehara J (2001) Injuries to the posterolateral aspect of the knee accompanied by compression fracture of the anterior part of the medial tibial plateau. Arthroscopy 17:642–647

    Article  CAS  PubMed  Google Scholar 

  5. Colletti P, Greenberg H, Terk MR (1996) MR findings in patients with acute tibial plateau fractures. Comput Med Imaging Graph 20:389–394

    Article  CAS  PubMed  Google Scholar 

  6. Durakbasa MO, Kose O, Ermis MN, Demirtas A, Gunday S, Islam C (2013) Measurement of lateral plateau depression and lateral plateau widening in a Schatzker type II fracture can predict a lateral meniscal injury. Knee Surg Sports Traumatol Arthrosc 21:2141–2146

    Article  PubMed  Google Scholar 

  7. Gardner MJ, Yacoubian S, Geller D, Pode M, Mintz D, Helfet DL, Lorich DG (2006) Prediction of soft-tissue injuries in Schatzker II tibial plateau fractures based on measurements of plain radiographs. J Trauma 60:319–323 discussion 324

    Article  PubMed  Google Scholar 

  8. Spiro AS, Regier M, Novo de Oliveira A, Vettorazzi E, Hoffmann M, Petersen JP, Henes FO, Demuth T, Rueger JM, Lehmann W (2013) The degree of articular depression as a predictor of soft-tissue injuries in tibial plateau fracture. Knee Surg Sports Traumatol Arthrosc 21:564–570

    Article  PubMed  Google Scholar 

  9. Gardner MJ, Yacoubian S, Geller D, Suk M, Mintz D, Potter H, Helfet DL, Lorich DG (2005) The Incidence of soft tissue injury in operative tibial plateau fractures: a magnetic resonance imaging analysis of 103 patients. J Orthop Trauma 19:79–84

    Article  PubMed  Google Scholar 

  10. Abdel-Hamid MZ, Chang CH, Chan YS, Lo YP, Huang JW, Hsu KY, Wang CJ (2006) Arthroscopic evaluation of soft tissue injuries in tibial plateau fractures: retrospective analysis of 98 cases. Arthroscopy 22:669–675

    Article  PubMed  Google Scholar 

  11. Sun H, Luo C-F, Yang G, Shi H-P, Zeng B-F (2012) Anatomical evaluation of the modified posterolateral approach for posterolateral tibial plateau fracture. Eur J Orthop Surg Traumatol 23:809–818

    Article  PubMed  Google Scholar 

  12. Tscherne H, Lobenhoffer P (1993) Tibial plateau fractures. Management and expected results. Clin Orthop Relat Res 292:87–100

    PubMed  Google Scholar 

  13. Mui LW, Engelsohn E, Umans H (2007) Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament tear or meniscal injury? Skeletal Radiol 36:145–151

    Article  PubMed  Google Scholar 

  14. Bennett WF, Browner B (1994) Tibial plateau fracture: a study of associated soft tissue injuries. J Orthop Trauma 8:183–188

    Article  CAS  PubMed  Google Scholar 

  15. Solomon LB, Boopalan PR, Chakrabarty A, Callary SA (2014) Can tibial plateau fractures be reduced and stabilised through an angiosome-sparing antero-lateral approach? Injury 45:766–774

    Article  PubMed  Google Scholar 

  16. Berber R, Lewis CP, Copas D, Forward DP, Moran CG (2014) Postero-medial approach for complex tibial plateau injuries with a postero-medial or postero-lateral shear fragment. Injury 45:757–765

    Article  PubMed  Google Scholar 

  17. Lasanianos NG, Garnavos C, Magnisalis E, Kourkoulis S, Babis GC (2013) A comparative biomechanical study for complex tibial plateau fractures: nailing and compression bolts versus modern and traditional plating. Injury 44:1333–1339

    Article  PubMed  Google Scholar 

  18. Weaver MJ, Harris MB, Strom AC, Smith RM, Lhowe D, Zurakowski D, Vrahas MS (2012) Fracture pattern and fixation type related to loss of reduction in bicondylar tibial plateau fractures. Injury 43:864–869

    Article  PubMed  Google Scholar 

  19. Cift H, Cetik O, Kalaycioglu B, Dirikoglu MH, Ozkan K, Eksioglu F (2010) Biomechanical comparison of plate-screw and screw fixation in medial tibial plateau fractures (Schatzker 4). A model study. Orthop Traumatol Surg Res 96:263–267

    Article  CAS  PubMed  Google Scholar 

  20. Mehin R, O’Brien P, Broekhuyse H, Blachut P, Guy P (2012) Endstage arthritis following tibia plateau fractures: average 10-year follow-up. Can J Surg 55:87–94

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C (2008) Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. Am J Sports Med 36:1275–1282

    Article  PubMed  Google Scholar 

  22. Khoshnoodi P, Tehranzadeh AD, Dunn JM, Tehranzadeh J (2014) Semimembranosus tendon avulsion fracture of the posteromedial tibial plateau associated with posterior cruciate ligament tear and capsular rupture. Skeletal Radiol 43:239–242

    Article  PubMed  Google Scholar 

  23. Yoon JR, Jeong HI, Wang JH, Jang KM, Yang JH (2013) Tibial plateau fracture after single bundle anterior cruciate ligament reconstruction using post-tie washer-screw fixation. J Orthop Sci 20:205–208

    Article  PubMed  Google Scholar 

  24. Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2004) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89

    Article  PubMed  Google Scholar 

  25. Fu FH, Karlsson J (2010) A long journey to be anatomic. Knee Surgery Sports Traumatol Arthrosc 18:1151–1153

    Article  Google Scholar 

  26. Meyer EG, Haut RC (2005) Excessive compression of the human tibio-femoral joint causes ACL rupture. J Biomech 38:2311–2316

    Article  PubMed  Google Scholar 

  27. Stannard JP, Lopez R, Volgas D (2010) Soft tissue injury of the knee after tibial plateau fractures. J Knee Surg 23:187–192

    Article  PubMed  Google Scholar 

  28. Agnew S (1999) Tibial plateau fractures. Oper Tech Orthop 9:197–205

    Article  Google Scholar 

  29. Markhardt BK, Gross JM, Monu J (2009) Schatzker classification of tibial plateau fractures: use of CT and MR imaging improves assessment. Radiographics 29:585–597

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manyi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wei, J. & Wang, M. The distinct prediction standards for radiological assessments associated with soft tissue injuries in the acute tibial plateau fracture. Eur J Orthop Surg Traumatol 25, 913–920 (2015). https://doi.org/10.1007/s00590-015-1614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-015-1614-5

Keywords

Navigation