Skip to main content
Log in

Influence of fragment volume on stability of 3-part intertrochanteric fracture of the femur: a biomechanical study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Complex unstable fracture can complicate the treatment outcome of intertrochanteric fracture of the femur, and fixation failure after surgery is a significant problem in elderly patients. This study aimed to evaluate the effect of fracture geometry on the stability of 3-part intertrochanteric fracture by assessing the fragment size. Four categories (group I: large greater trochanter, small lesser trochanter; group II: large greater trochanter, large lesser trochanter; group III: small greater trochanter, small lesser trochanter; and group IV: small greater trochanter, large lesser trochanter) of a 3-part intertrochanteric fracture model were designed. Three-dimensional computer tomography scanning was performed to measure the volume of each fragment. After fixation with a dynamic hip screw, a cyclic loading study was conducted using a servohydraulic machine. There was a significant difference in fatigue failure between each group. After all specimens had endured 10,000 cycles with a range of loads (100–1,000 N), the mean number of cycles until fixation failure with a load range of 200–2,000 N was 1,467.67 ± 199.92 in group I; 579 ± 93.48, group II; 398.17 ± 37.92, group III; and 268.67 ± 19.92, group IV. Fixation strength was approximately 5 times greater in group I than in group IV. In 3-part intertrochanteric fracture, the sizes of the greater and lesser trochanteric fragments are important factors for determining stability after dynamic compression screw fixation. This study supports our hypothesis that the volumetric ratio of ∆lesser trochanter/∆greater trochanter can be used to predict stability of intertrochanteric femoral fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornwall R, Gilbert MS, Koval KJ, Strauss E, Siu AL (2004) Functional outcomes and mortality vary among different types of hip fractures: a function of patient characteristics. Clin Orthop Relat Res 425:64–71

    Article  PubMed  Google Scholar 

  2. Michelson JD, Myers A, Jinnah R, Cox Q, Van Natta M (1995) Epidemiology of hip fractures among the elderly. Risk factors for fracture type. Clin Orthop Relat Res 311:129–135

    PubMed  Google Scholar 

  3. Evans EM (1949) Treatment of trochanteric fractures of the femur. J Bone Joint Surg 31B:190–203

    CAS  Google Scholar 

  4. Koval KJ, Zuckerman JD (1994) Hip fractures: II. Evaluation and treatment of intertrochanteric fractures. J Am Acad Orthop Surg 2:150–156

    PubMed  Google Scholar 

  5. Apel DM, Patwardhan A, PinzurMS DoboziWR (1989) Axial loading studies of unstable intertrochanteric fractures of the femur. Clin Orthop 246:156–164

    PubMed  Google Scholar 

  6. Boyd HB, Griffin LL (1949) Classification and treatment of inter-trochanteric fractures. Arch Surg 58:853–866

    Article  PubMed  CAS  Google Scholar 

  7. Kyle RF, Gustilo RB, Premer RF (1979) Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Joint Surg 61-A:216–221

    Google Scholar 

  8. Anglen JO, Weinstein JN (2008) American Board of Orthopaedic Surgery Research Committee. Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery database. J Bone Joint Surg Am 90:700–707

    Article  PubMed  Google Scholar 

  9. Lorich DG, Geller DS, Nielson JH (2004) Osteoporotic pertrochanteric hip fractures: management and current controversies. Inst Course Lecture 53:441–453

    Google Scholar 

  10. Doppelt SH (1980) The sliding compression screw—Today’s best answer for stabilization of intertrochanteric hip fractures. Ortho Clin N Am 11:507–523

    CAS  Google Scholar 

  11. Kim WY, Han CH, Park JI, Kim JY (2001) Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop 25:360–362

    Article  PubMed  CAS  Google Scholar 

  12. Lindskog DM, Baumgaertner MR (2004) Unstable intertrochanteric hip fractures in the elderly. J Am Acad Orthop Surg 12:179–190

    PubMed  Google Scholar 

  13. Whitelaw GP, Segel D, Sanzone CF, Ober NS, Hadley N (1990) Unstable intertrochanteric/subtrochanteric fractures of the femur. Clin Orthop 252:238–245

    PubMed  Google Scholar 

  14. Parker M, Handoll H (2006) Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst Rev 3:CD004961

    PubMed  Google Scholar 

  15. Walsh ME, Wilkinson R, Stother IG (1990) Biomechanical stability of four-part intertrochanteric fractures in cadaveric femurs fixed with a sliding screw plate. Injury 21:89–92

    Article  PubMed  CAS  Google Scholar 

  16. Kaufer H, Matthews LS, Sonstegard D (1974) Stable fixation of intertrochanteric fractures. A biomechanical evaluation. J Bone Joint Surg 56A:899–907

    Google Scholar 

  17. Hartog BDD, Bartal E, Cooke F (1991) Treatment of unstable intertrochanteric fracture. J Bone Joint Surg 73-A:726–733

    Google Scholar 

  18. Haidukewych G (2009) Intertrochanteric fractures: ten tips to improved results. J Bone Joint Surg Am 91:712–719

    PubMed  Google Scholar 

  19. Su ET, DeWal H, Kummer FJ, Koval KJ (2003) The effect of an attachable lateral support plate on the stability of intertrochanteric fracture fixation with a sliding hip screw. J Trauma 55:504–508

    Article  PubMed  Google Scholar 

  20. Han SK, Lee BY, Kim YS, Choi NY (2010) Usefulness of multi-detector CT in Boyd-Griffin type 2 intertrochanteric fractures with clinical correlation. Skeletal Radiol 39:543–549

    Article  PubMed  Google Scholar 

  21. Jensen JS (1980) Classification of trochanteric fractures. Acta Orthop Scand 51:803–810

    Article  PubMed  CAS  Google Scholar 

  22. Talbot M, Zdero R, Schemitsch EH (2008) Cyclic loading of periprosthetic fracture fixation constructs. J Trauma 64:1308–1312

    Article  PubMed  Google Scholar 

  23. Zdero R, Walker R, Waddell JP (2008) Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Joint Surg Am 90:1068–1077

    Article  PubMed  Google Scholar 

  24. Curtis MJ, Jinnah RH, Wilson V, Cunningham BW (1994) Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Injury 25(2):99–104

    Article  PubMed  CAS  Google Scholar 

  25. Chan KC, Gill GS (2000) Cemented hemiarthroplasties for elderly patients with intertrochanteric fractures. Clin Orthop 371:206–215

    Article  PubMed  Google Scholar 

  26. Grimsrud C, Monzon RJ, Richman J, Ries MD (2005) Cemented hip arthroplasty with a novel cerclage cable technique for unstable intertrochanteric hip fractures. J Arthroplasty 20(3):337–343

    Article  PubMed  Google Scholar 

  27. May JMB, Chacha PB (1968) Displacements of trochanteric fractures and their influence on reduction. J Bone Joint Surg 50:318–323

    CAS  Google Scholar 

  28. Gotfried Y (2004) The lateral trochanteric wall. Clin Orthop 425:82–86

    Article  PubMed  Google Scholar 

  29. Von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24:2230–2237

    Article  PubMed  Google Scholar 

  30. Thomsen JS, Ebbesen EN, Mosekilde L (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508

    Article  PubMed  CAS  Google Scholar 

  31. Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katharine O’Moore-Klopf, ELS, for providing editorial assistance.

Conflict of interest

The authors declare that they have no conflicts of interest, financial or otherwise, to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ku Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, JH., Kim, YS., Lee, SJ. et al. Influence of fragment volume on stability of 3-part intertrochanteric fracture of the femur: a biomechanical study. Eur J Orthop Surg Traumatol 23, 371–377 (2013). https://doi.org/10.1007/s00590-012-0983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-012-0983-2

Keywords

Navigation