Skip to main content

Advertisement

Log in

The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The potential of stem cell niches (SCNs) in the intervertebral disc (IVD) region, which may be of great significance in the regeneration process, was recently proposed. To the best of our knowledge, no previous in vitro study has examined the characteristics of stem cells derived from the potential SCN of IVD (ISN). Therefore, increasing knowledge on ISN-derived stem cells (ISN-SCs) may provide a greater understanding of IVD degeneration and regeneration processes. We aimed to demonstrate the existence of ISN-SCs and to compare their characteristics with bone marrow mesenchymal stem cells (BMSCs) in vitro.

Methods

Sprague–Dawley rats (male, 10-week-old) were used in this study. ISN tissues were separated by ophthalmic surgical instruments under a dissecting microscope according to the anatomical areas. BMSCs and cells isolated from the ISN tissues were cultured and expanded in vitro. Passage 4 populations were used for further analysis with respect to colony-forming ability, cellular immunophenotype, cell cycle, stem cell-related gene expression, and proliferation and multipotential differentiation capacities.

Results

In general, both of ISN-SCs and mesenchymal stromal cells (MSCs) met the minimal criteria for the definition of multipotent mesenchymal stromal cells, including adherence to plastic, specific surface antigen expression, and multipotent differentiation potential. Especially, ISN-SCs even showed greater potential of osteogenesis and chondrogenesis. The ISN-SCs also expressed stem cell-related genes that were comparable to those of BMSCs, and had colony-forming and self-renewal abilities.

Conclusions

To the best of our knowledge, this is the first in vitro study aimed towards determining the existence and characteristics of ISN-SCs, which belong to the MSC family and with greater osteogenic and chondrogenic abilities than BMSCs according to our data. This finding may be of great significance for additional studies that investigate the migration of ISN-SCs into the IVD, and may provide a new perspective on different biological approaches for IVD self-regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Luo X, Pietrobon R, Sun SX, Liu GG, Hey L (2004) Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spine (Phila Pa 1976) 29(1):79–86. doi:10.1097/01.BRS.0000105527.13866.0F

    Article  Google Scholar 

  2. Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) 25(4):487–492

    Article  CAS  Google Scholar 

  3. Wang H, Zhou Y, Huang B, Liu LT, Liu MH, Wang J, Li CQ, Zhang ZF, Chu TW, Xiong CJ (2014) Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A 20(5–6):908–920. doi:10.1089/ten.TEA.2012.0703

    Article  CAS  PubMed  Google Scholar 

  4. Clarke LE, Richardson SM, Hoyland JA (2015) Harnessing the potential of mesenchymal stem cells for IVD regeneration. Curr Stem Cell Res Ther 10(4):296–306

    Article  CAS  PubMed  Google Scholar 

  5. Longo UG, Papapietro N, Petrillo S, Franceschetti E, Maffulli N, Denaro V (2012) Mesenchymal stem cell for prevention and management of intervertebral disc degeneration. Stem Cells Int 2012:921053. doi:10.1155/2012/921053

    PubMed Central  PubMed  Google Scholar 

  6. Cai F, Wu XT, Xie XH, Wang F, Hong X, Zhuang SY, Zhu L, Rui YF, Shi R (2015) Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits. Int Orthop 39(1):149–159. doi:10.1007/s00264-014-2481-0

    Article  PubMed  Google Scholar 

  7. Hoogendoorn RJW, Lu ZF, Kroeze RJ, Bank RA, Wuisman PI, Helder MN (2008) Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J Cell Mol Med 12(6a):2205–2216. doi:10.1111/j.1582-4934.2008.00291.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Song K, Gu T, Shuang F, Tang J, Ren D, Qin J, Hou S (2015) Adipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs. Mol Med Reports. doi:10.3892/mmr.2015.3895

    Google Scholar 

  9. Schofield R (1978) The relationship between the spleen colony-forming cell and the haematopoietic stem cell. Blood cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  10. Jedrzejas M, Skowron K, Czekaj P (2012) Stem cell niches exposed to tobacco smoke. Przegl Lek 69(10):1063–1073

    PubMed  Google Scholar 

  11. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6(2):103–115. doi:10.1016/j.stem.2010.01.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang K, Zhao X, Kuang C, Qian D, Wang H, Jiang H, Deng M, Huang L (2012) Overexpression of SDF-1alpha enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS ONE 7(9):e43922. doi:10.1371/journal.pone.0043922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Christie KJ, Turnley AM (2012) Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 6:70. doi:10.3389/fncel.2012.00070

    Article  PubMed Central  PubMed  Google Scholar 

  14. Madhavan L, Collier TJ (2010) A synergistic approach for neural repair: cell transplantation and induction of endogenous precursor cell activity. Neuropharmacology 58(6):835–844. doi:10.1016/j.neuropharm.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  15. Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14. doi:10.3389/fncel.2012.00014

    PubMed Central  PubMed  Google Scholar 

  16. Yu H, Vu TH, Cho KS, Guo C, Chen DF (2014) Mobilizing endogenous stem cells for retinal repair. Transl Res 163(4):387–398. doi:10.1016/j.trsl.2013.11.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264. doi:10.1038/ncomms2226

    Article  PubMed Central  PubMed  Google Scholar 

  18. Liu LT, Huang B, Li CQ, Zhuang Y, Wang J, Zhou Y (2011) Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS ONE 6(10):e26285. doi:10.1371/journal.pone.0026285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang B, Liu LT, Li CQ, Zhuang Y, Luo G, Hu SY, Zhou Y (2012) Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 21(4):613–622. doi:10.1007/s00586-011-2039-4

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu C, Guo Q, Li J, Wang S, Wang Y, Li B, Yang H (2014) Identification of rabbit annulus fibrosus-derived stem cells. PLoS ONE 9(9):e108239. doi:10.1371/journal.pone.0108239

    Article  PubMed Central  PubMed  Google Scholar 

  21. Henriksson H, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A, Brisby H (2009) Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34(21):2278–2287. doi:10.1097/BRS.0b013e3181a95ad2

    Article  Google Scholar 

  22. Henriksson HB, Lindahl A, Skioldebrand E, Junevik K, Tangemo C, Mattsson J, Brisby H (2013) Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit. Stem Cell Res Therapy 4(5):104. doi:10.1186/scrt315

    Article  Google Scholar 

  23. Henriksson HB, Svala E, Skioldebrand E, Lindahl A, Brisby H (2012) Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976) 37(9):722–732. doi:10.1097/BRS.0b013e318231c2f7

    Article  Google Scholar 

  24. Sasaki N, Henriksson HB, Runesson E, Larsson K, Sekiguchi M, Kikuchi S, Konno S, Rydevik B, Brisby H (2012) Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats. Spine (Phila Pa 1976) 37(17):1440–1447. doi:10.1097/BRS.0b013e31824ff87d

    Article  Google Scholar 

  25. Ishii Y, Thomas AO, Guo XE, Hung CT, Chen FH (2006) Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine (Phila Pa 1976) 31(14):1539–1546. doi:10.1097/01.brs.0000221994.61882.4a

    Article  Google Scholar 

  26. Liang CZ, Li H, Tao YQ, Peng LH, Gao JQ, Wu JJ, Li FC, Hua JM, Chen QX (2013) Dual release of dexamethasone and transforming growth factor beta3 from polymeric microspheres for the stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater. doi:10.1016/j.actbio.2013.08.019

    PubMed Central  Google Scholar 

  27. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  28. Boxall SA, Jones E (2012) Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012:975871. doi:10.1155/2012/975871

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462. doi:10.1007/s00441-006-0308-z

    Article  CAS  PubMed  Google Scholar 

  30. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2):203–210

    Article  CAS  PubMed  Google Scholar 

  31. Postacchini F, Bellocci M, Massobrio M (1984) Morphologic changes in annulus fibrosus during aging. An ultrastructural study in rats. Spine (Phila Pa 1976) 9(6):596–603

    Article  CAS  Google Scholar 

  32. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529. doi:10.1002/art.21212

    Article  PubMed  Google Scholar 

  33. Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M (2009) Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132(5):533–546. doi:10.1007/s00418-009-0629-6

    Article  CAS  PubMed  Google Scholar 

  34. Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M (2014) Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells 7(2):135–142. doi:10.15283/ijsc.2014.7.2.135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Barzilay R, Sadan O, Melamed E, Offen D (2009) Comparative characterization of bone marrow-derived mesenchymal stromal cells from four different rat strains. Cytotherapy 11(4):435–442. doi:10.1080/14653240902849796

    Article  PubMed  Google Scholar 

  36. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233(7):901–913. doi:10.3181/0712-RM-356

    Article  CAS  Google Scholar 

  37. Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24(4):928–935. doi:10.1634/stemcells.2005-0186

    Article  CAS  PubMed  Google Scholar 

  38. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24(5):1254–1264. doi:10.1634/stemcells.2005-0271

    Article  CAS  PubMed  Google Scholar 

  39. Xu X, Zhu F, Zhang M, Zeng D, Luo D, Liu G, Cui W, Wang S, Guo W, Xing W, Liang H, Li L, Fu X, Jiang J, Huang H (2013) Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs 197(2):103–113. doi:10.1159/000342921

    Article  CAS  PubMed  Google Scholar 

  40. Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95(4):827–839. doi:10.1002/jcb.20462

    Article  CAS  PubMed  Google Scholar 

  41. Reems JA, Torok-Storb B (1995) Cell cycle and functional differences between CD34+/CD38hi and CD34+/38lo human marrow cells after in vitro cytokine exposure. Blood 85(6):1480–1487

    CAS  PubMed  Google Scholar 

  42. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582. doi:10.1016/j.cell.2008.01.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8. doi:10.1186/1477-7827-4-8

    Article  PubMed Central  PubMed  Google Scholar 

  44. Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA (2005) Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 14(4):440–451. doi:10.1089/scd.2005.14.440

    Article  CAS  PubMed  Google Scholar 

  45. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138(4):722–737. doi:10.1016/j.cell.2009.07.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the drosophila testis. Cell Stem Cell 1(4):470–478. doi:10.1016/j.stem.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6(3):371–382. doi:10.1111/j.1474-9726.2007.00286.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gopinath SD, Rando TA (2008) Stem cell review series: aging of the skeletal muscle stem cell niche. Aging Cell 7(4):590–598. doi:10.1111/j.1474-9726.2008.00399.x

    Article  CAS  PubMed  Google Scholar 

  49. Hunter CJ, Matyas JR, Duncan NA (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205(5):357–362. doi:10.1111/j.0021-8782.2004.00352.x

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81272035, 81071493, 31070876 and 81201423), the Science and Technology Department of Jiangsu Province, China (BL2013031), and the Fundamental Research Funds for the Central Universities (KYLX_0202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Wu.

Ethics declarations

Conflict of interest

None.

Additional information

R. Shi and F. Wang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Wang, F., Hong, X. et al. The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats. Eur Spine J 24, 2411–2424 (2015). https://doi.org/10.1007/s00586-015-4168-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4168-7

Keywords

Navigation